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2 WINDINGS OF ELECTRICAL MACHINES 
 
The operation principle of electrical machines is based on the interaction between the magnetic 
fields and the currents flowing in the windings of the machine. The winding constructions and 
connections together with the currents and voltages fed into the windings determine the operating 
modes and the type of the electrical machine. According to their different functions in an electrical 
machine, the windings are grouped for instance as follows: 
 

• armature windings, 
• other rotating-field windings (e.g. stator or rotor windings of induction motors) 
• field (magnetizing) windings, 
• damper windings  
• commutating windings, and 
• compensating windings.  

 
Armature windings are rotating-field windings, into which the rotating-field-induced voltage 
required in energy conversion is induced. According to IEC 60050-411, the armature winding is a 
winding in a synchronous, DC, or single-phase commutator machine, which, in service, receives 
active power from or delivers active power to the external electrical system. This definition also 
applies to a synchronous compensator if the term ‘active power’ is replaced by ‘reactive power’.  
The air gap flux component caused by the armature current linkage is called the armature reaction. 
 
An armature winding determined under these conditions can transmit power between an electrical 
network and a mechanical system. Magnetizing windings create a magnetic field required in the 
energy conversion. All machines do not include a separate magnetizing winding; for instance in 
asynchronous machines, the stator winding both magnetizes the machine and acts as a winding, 
where the operating voltage is induced. The stator winding of an asynchronous machine is similar to 
the armature of a synchronous machine; however, it is not defined as an armature in the IEC 
standard. In this material, the asynchronous machine stator is therefore referred to as a rotating-field 
stator winding, not an armature winding. Voltages are also induced to the rotor of an asynchronous 
machine, and currents significant in the torque production are created. However, the rotor itself 
takes only a rotor’s dissipation power (I2R) from the air gap power of the machine, this power being 
proportional to the slip; therefore, the machine can be considered stator fed, and depending on the 
rotor type, the rotor is called either a squirrel cage rotor or a wound rotor. In DC machines, the 
function of a rotor armature winding is to perform the actual power transmission, the machine being 
thus rotor fed. Field windings do not normally participate in energy conversion, double-salient pole 
reluctance machines maybe excluded: in principle, they have nothing but magnetizing windings, but 
the windings also perform the function of the armature. In DC machines, commutating and 
compensating windings are windings, the purpose of which is to create auxiliary field components 
to compensate the armature reaction of the machine and thus improve its performance 
characteristics. Similarly as the previously described windings, these windings do not participate in 
energy conversion in the machine either. The damper windings of synchronous machines are a 
special case among different winding types. Their primary function is to damp undesirable 
phenomena, such as oscillations and fields rotating opposite to the main field. Damper windings are 
important during the transients of controlled synchronous drives, in which the damper windings 
keep the air gap flux linkage instantaneously constant. In the asynchronous drive of a synchronous 
machine, the damper windings act like cage windings of asynchronous machines.  
 
The most important windings are categorized according to their geometrical characteristics and 
internal connections as follows: 
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• phase windings, 
• salient pole windings, and 
• commutator windings 

 
Windings, in which separate coils embedded in slots form a single or poly-phase winding, constitute 
a large group of AC armature windings. However, a similar winding is also employed in the 
magnetizing of non-salient pole synchronous machines. In commutator windings, individual coils 
contained in slots form a single or several closed circuits, which are connected together via a 
commutator. Commutator windings are employed only as armature windings of DC and AC 
commutator machines. Salient pole windings are normally concentrated field windings, but may also 
be used as armature windings for instance in fractional slot permanent magnet machines and in 
double-salient reluctance machines. Concentrated stator windings are used as an armature winding 
also in small shaded-pole motors. 
 
In the following, the windings applied in electrical machines are classified according to the two 
main winding types, viz. slot windings and salient pole windings. Both types are applicable both to 
direct and alternating current cases, Table 2.1.  
 
Table 2.1. Different types of windings or permanent magnets used instead of a field winding in the most common 
machine types. 

 Stator winding Rotor winding Compensating 
winding 

Commutating 
winding 

Damper winding 

Salient pole 
synchronous machine 

poly-phase 
distributed 
rotating-field slot 
winding 

salient pole 
winding 

- - short-circuited cage 
winding 

Non-salient pole 
synchronous machine 

poly-phase 
distributed 
rotating-field slot 
winding  

slot winding - - solid rotor core or 
short-circuited cage 
winding 

Synchronous 
reluctance machine 

poly-phase 
distributed 
rotating-field slot 
winding  

- - - short-circuited cage 
winding possible 

Permanent magnet 
synchronous machine, 
PMSM,  
q > 0.5 

poly-phase 
distributed 
rotating-field slot 
winding 

permanent 
magnets 

- - solid rotor or short-
circuited cage 
winding, or e.g.  
aluminium plate in 
the air gap possible 

Permanent magnet 
synchronous machine, 
PMSM,   
q ≤ 0.5 

poly-phase 
concentrated 
pole winding  

permanent 
magnets 

- - Damping should be 
harmful because of 
excessive losses 

Double-salient 
reluctance machine 

poly-phase 
concentrated 
pole winding  

- - - - 

Induction motor, IM poly-phase 
distributed 
rotating-field slot 
winding 

cast or soldered 
cage winding, 
squirrel cage 
winding 

- - - 

Solid rotor IM poly-phase 
distributed 
rotating-field slot 
winding 

solid rotor made 
of steel, may be 
equipped with  
squirrel cage 

- - - 

Slip-ring 
asynchronous motor 

poly-phase 
distributed 
rotating-field slot 
winding 

poly-phase 
distributed 
rotating-field slot 
winding 

- - - 
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DC machine salient pole 
winding 

rotating-field 
commutator slot 
winding 

slot winding salient pole 
winding 

- 

 

2.1 Basic Principles 
 

2.1.1 Salient Pole Windings 
 
Fig. 2.1 illustrates a synchronous machine with a salient pole rotor. To magnetize the machine, 
direct current is fed through brushes and slip rings to the windings located on the salient poles. The 
main flux created by the direct current flows from the pole shoe to the stator and back 
simultaneously penetrating the poly-phase slot winding of the stator. The dotted lines in the figure 
depict the paths of the main flux. Such a closed path of a flux forms the magnetic circuit of a 
machine.  
 
One turn of a coil is a conductor that constitutes a single turn around the magnetic circuit. A coil is a 
part of winding that consists of adjacent series-connected turns between the two terminals of the 
coil. Figure 2.1a illustrates a synchronous machine with a pole with one coil per pole, whereas in 
Figure 2.1b, the locations of the direct (d) and quadrature (q) axes are shown. 
 

τp
q d q

d

a)                                                                                           b)  
 
Figure 2.1. a) Salient pole synchronous machine (p = 4). The black areas around two pole bodies form a salient pole 
winding. b) Single poles with windings, d $=  direct axis, q $=  quadrature axis. In salient pole machines, these two 
magnetically different, rotor-geometry-defined axes have a remarkable effect on the machine behaviour; the issue will be 
discussed later. 
 
A group of coils is a part of winding that magnetizes the same magnetic circuit. In Fig. 2.1a, the 
coils at the different magnetic poles (N and S alternating) form in pairs a group of coils. The number 
of field winding turns magnetizing one pole is Nf. 
 
The salient pole windings located on the rotor or on the stator are mostly used for the DC 
magnetizing of a machine. The windings are then called magnetizing or sometimes excitation 
windings. With a direct current, they create a time-constant current linkage Θ. The part of this 
current linkage consumed in the air gap, that is, the magnetic potential difference of the air gap Um,δ, 
may be, for simplicity, regarded as constant between the quadrature axes, and it changes its sign at 
the quadrature axis q, Fig. 2.2. 
 
A significant field of application for salient pole windings is doubly salient reluctance machines. In 
these machines, a solid salient pole is not utilizable, since the changes of flux are rapid when 
operating at high speeds. At simplest, DC pulses are fed to the pole windings with power switches. 
In the air gap, direct current creates a flux that tries to turn the rotor in a direction where the 
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magnetic circuit of the machine reaches its minimum reluctance. The torque of the machine tends to 
be pulsating, and to reach an even torque, the current of a salient pole winding should be 
controllable so that the rotor can rotate without jerking.  
 
Salient pole windings are employed also in the magnetizing windings of the DC machines. All 
series, shunt, and compound windings are wound on salient poles. The commutating windings are 
also of the same type as salient pole windings.  
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Figure 2.2. a) Equivalent magnetic circuit. The current linkages Θf created by two adjacent salient pole windings. Part 
Um,δ is consumed in the air gap. b) The behaviour of the air gap flux density Bδ. Thanks to the appropriate design of the 
pole shoe, the air gap flux density varies cosinusoidally even though it is caused by the constant magnetic potential 
difference in the air gap Um,δ. The air gap magnetic flux density Bδ has its peak value on the d-axis and is zero on the q-
axis. The current linkage created by the pole is accumulated by the ampere turns on the pole. 

 
EXAMPLE 2.1: Calculate the field winding current that can ensure a maximum magnetic flux 
density of Bδ = 0.82 T in the air gap of a synchronous machine if there are 95 field winding turns 
per pole. It is assumed that the air gap magnetic flux density of the machine is sinusoidal along the 
pole shoes and the magnetic permeability of iron is infinite ( ∞=Feμ ) in comparison with the 
permeability of air 7

0 10π4 −⋅=μ H/m. The minimum length of the air gap is 3.5 mm. 
 
SOLUTION: If ∞=Feμ , the magnetic reluctance of iron parts and the iron magnetic potential 
difference is zero. Now, the whole field current linkage fff IN=Θ  is spent in the air gap to create 
the required magnetic flux density: 

A105.3
10π4
82.0 3

7
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δδm,fff ⋅

⋅
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If the number of turns is Nf = 95, the field current is  
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It should be noticed that calculation of this kind is appropriate for an approximate calculation of the 
current linkage needed. In fact, about 60–90 % of the magnetic potential difference in electrical 
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machines is spent in the air gap, and the rest in the iron parts. Therefore, in a detailed design of 
electrical machines, it is necessary to take into account all the iron parts with appropriate material 
properties. A similar calculation is valid for DC machines with the exception that in DC machines 
the air gap is usually constant under the poles. 
 
 
2.1.2 Slot Windings  
 
Here we concentrate on symmetrical, three-phase AC distributed slot windings, in other words, 
rotating-field windings. However, first, we discuss the magnetizing winding of a rotor of a non-
salient pole synchronous machine, and finally turn to commutator windings, compensating 
windings, and damper windings. Because unlike in the salient pole machine, the length of the air 
gap is now constant, we may create a cosinusoidally distributed flux density in the air gap by 
producing a cosinusoidal distribution of current linkage with an AC magnetizing winding, Fig. 2.3. 
The cosinusoidal distribution, instead of sinusoidal, is used because we want the flux density to 
reach its maximum on the direct-axis, where α = 0. 
 
In the case of Fig. 2.3, the function of the magnetic flux density approximately follows the curve 
function of the current linkage distribution ( )αΘ . In machine design, an equivalent air gap δ e  is 
applied, the target being to create a cosinusoidally alternating flux density into the air gap 
 

 ( ) ( )αΘ
δ
μα

e

0=B         (2.1) 

 
The concept of equivalent air gap δ e  will be discussed later. 
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Figure 2.3. Current linkage distribution created by two-pole non-salient pole winding and the fundamental of the current 
linkage. There are zQ conductors in each slot, and the excitation current in the winding is If. The height of a single step 
of the current linkage is zQIf.  
 
The slot pitch τu and the slot angle αu are the core parameters of the slot winding. The slot pitch is 
measured in metres, whereas the slot angle is measured in electrical degrees. The number of slots 
being Q and the diameter of the air gap D, we may write 
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Q

p
Q
D π2 ;π

uu == ατ .        (2.2) 

 
The slot pitch being usually constant in non-salient pole windings, the current sum (zQIf) in a slot has 
to be of a different magnitude in different slots (in a sinusoidal or cosinusoidal manner to achieve a 
sinusoidal or cosinusoidal variation of current linkage along the surface of the air gap.). Usually, 
there is a current of equal magnitude flowing in all turns in the slot, and therefore, the number of 
conductors zQ in the slots has to be varied. In the slots of the rotor in Fig. 2.3, the number of turns is 
equal in all slots, and a current of equal magnitude is flowing in the slots. We may see that by 
selecting zQ slightly differently in different slots, we can improve the stepped waveform of the figure 
to better approach the cosinusoidal form. The need for this depends on the induced voltage harmonic 
content in the stator winding. The voltage may be of almost pure sinusoidal waveform despite the 
fact that the air gap flux density distribution should not be perfectly sinusoidal. This depends on the 
stator winding factors for different harmonics. In synchronous machines, the air gap is usually 
relatively large, and correspondingly, the flux density on the stator surface changes more smoothly 
(neglecting the influence of slots) than the stepped current linkage waveform of Fig. 2.3. Here, we 
apply the well-known finding that if 2/3 of the rotor surface are slotted and 1/3 is left slotless, not 
only the third harmonic component but any of its multiple harmonics called triplen harmonics are 
eliminated in the air gap magnetic flux density, and also the low-order odd harmonics (5th, 7th ) are 
suppressed.  
 
 
2.1.3 End Windings 
 
Figure 2.4 illustrates how the arrangement of the coil end influences the physical appearance of the 
winding. The windings a and b in the figure are of equal value with respect to the main flux, but 
their leakage inductances diverge from each other because of the slightly different coil ends. When 
investigating the winding a of Fig. 2.4, we note that the coil ends form two separate planes at the 
endfaces of the machine. This kind of a winding is therefore called a two-plane winding. The coil 
ends of the type are depicted in Fig. 2.4e. In the winding of Fig. 2.4b, the coil ends are overlapping, 
and therefore, this kind of winding is called a diamond winding (lap winding). Figures 2.4c and d 
illustrate three-phase stator windings that are identical with respect to the main flux, but in Fig. 2.4c, 
the groups of coil are non-divided, and in Fig. 2.4d, the groups of coil are divided. In Fig. 2.4c, an 
arbitrary radius r is drawn across the coil end. It is shown that at any position, the radius intersects 
only coils of two phases, and the winding can thus be constructed as a two-plane winding. A 
corresponding winding constructed with distributed coils (Fig. 2.4d) has to be a three-plane 
arrangement, since now the radius r may intersect the coil ends of the windings of all the three 
phases. 
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Figure 2.4. a) Concentric winding and b) a diamond winding. In a two-plane winding, the coil spans differ from each 
other. In the diamond winding, all the coils are of equal width. c) A two-plane three-phase four-pole winding with non-
divided groups of coil. d) A three-plane three-phase four-pole winding with divided groups of coils. Figures c and d 
illustrate also a single main flux path. e) Profile of an end winding arrangement of a two-plane winding. f) Profile of an 
end winding of a three-plane winding. The radii r in the figures illustrate that in a winding with non-divided groups, an 
arbitrary radius may intersect only two phases, and in a winding with divided groups, the radius may intersect all the 
three phases. The two- or three-plane windings will result correspondingly. 
 
The part of a coil located in a single slot is called a coil side, and the part of the coil outside the slot 
is termed a coil end. The coil ends together constitute the end windings of the winding.  
 
 

2.2 Phase Windings 
 
Next, poly-phase slot windings that produce the rotating field of poly-phase AC machines are 
investigated. In principle, the number of phases m can be selected freely, but the use of a three-phase 
supply network has led to a situation in which also most electrical machines are of the three-phase 
type. Another, extremely common type is two-phase electrical machines that are operated with a 
capacitor start and run motor in a single-phase network. A symmetrical two-phase winding is in 
principle the simplest AC winding that produces a rotating field.  
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A configuration of a symmetrical poly-phase winding can be considered as follows: the periphery of 
the air gap is evenly distributed over the poles so that we can determine a pole arc, which covers 180 
electrical degrees and a corresponding pole pitch, τp, which is expressed in metres 
 

 
p
D

2
π

p =τ .         (2.3) 

 
Figure 2.5 depicts the division of the periphery of the machine into phase zones of positive and 
negative values. In the figure, the number of pole pairs p = 2, and the number of phases m = 3. 
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Figure 2.5. Division of the periphery of a three-phase four-pole machine into phase zones of positive and negative 
values. Pole pitch is τp and phase zone distribution τv. When the windings are located in the zones, the instantaneous 
currents in the positive and negative zones are flowing in opposite directions. 
 
Phase zone distribution is written as  
 

 
m

p
v

τ
τ = .         (2.4) 

 
The number of zones will thus be 2pm. The number of slots per each such zone is expressed by the 
term q, as a number of slots per pole and phase  
 

 
pm
Qq

2
= .         (2.5) 

 
Here Q is the number of slots in the stator or in the rotor. In integral slot windings, q is an integer. 
However, q can also be a fraction. In that case, the winding is called a fractional slot winding. 
 
The phase zones are distributed symmetrically to different phase windings so that the phase zones of 
the phases U, V, W, ... are positioned on the periphery of the machine at equal distances in electrical 
degrees. In a three-phase system, the angle between the phases is 120 electrical degrees. This is 
illustrated by the periphery of Fig. 2.5, where we have 2×360 electrical degrees because of four 
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poles. Now, it is possible to label every phase zone. We start for instance with the positive zone of 
the phase U. The first positive zone of the phase V shall be 120 electrical degrees from the first 
positive zone of the phase U. Correspondingly, the first positive zone of the phase W shall be 120 
electrical degrees from the positive zone of the phase V etc. In Fig. 2.5, there are two pole pairs, and 
hence we need two positive zones for each phase U, V, and W. In the slots of each, now labelled 
phase zones, there are only the coil sides of the labelled phase coil, in all of which the current flows 
in the same direction. Now, if their direction of current is selected positive in the diagram, the 
unlabelled zones become negative. Negative zones are labelled by starting from the distance of a 
pole pitch from the position of the positive zones. Now U and –U, V and –V, W and –W are at the 
distance of 180 electrical degrees from each other. 
 
 

2.3 Three-Phase Integral Slot Stator Winding 
 
The armature winding of a three-phase electrical machine is usually constructed in the stator, and it 
is spatially distributed in the stator slots so that the current linkage created by the stator currents is 
distributed as sinusoidally as possible. The simplest stator winding that produces a noticeable 
rotating field comprises three coils, the sides of which are divided into six slots, because if m = 3, p 
= 1, q = 1, then Q = 2pmq = 6; see Figs. 2.6 and 2.7. 
 
EXAMPLE 2.2: Create a three-phase, two-pole stator winding with q = 1. Distribute the phases in 
the slots and illustrate the current linkage created based on the instant values of phase sinusoidal 
currents. Draw a phasor diagram of the slot voltage and sum the voltages of the individual phases. 
Create a current linkage waveform in the air gap for the time instant t1 when the phase U voltage is 
in its positive maximum and for t2, which is 30° shifted.  
 
SOLUTION: If m = 3, p = 1, q = 1, then Q = 2pmq = 6, which is the simplest case of three-phase 
windings. The distribution of the phases in the slots will be explained based on Fig. 2.6. Starting 
from the slot 1, we insert there the positive conductors of the phase U forming the zone U1. The 
pole pitch expressed in the number of slots per pole, or in other words, ‘the coil span expressed in 
the number of slot pitches yQ’ is  
 

3
2
6

2Q ===
p

Qy . 

 
Then, the zone U2 will be one pole pitch shifted from U1 and will be located in the slot 4, because 1 
+ yQ = 1 + 3 = 4. The beginning of the phase V1 is 120°shifted from U1, which means the slot 3, and 
its end V2 is in the slot 6 (3 + 3 = 6). The phase W1 is again shifted form V1 by 120°, which means 
the slot 5, and its end is in the slot 2; see Fig. 2.6a. The polarity of instantaneous currents is shown at 
the instant, when the current of the phase U is in its positive maximum value flowing in the slot 1, 
depicted as a cross (tail of arrow) in U1 (current flowing away from the observer). Then, U2 is 
depicted by a dot (a point of arrow) in the slot 4 (current flowing towards the observer). At the same 
instant in V1 and W1, there are also dots, because the phases V and W are carrying negative current 
values (see 2.6d), and therefore V2 and W2 are positive, indicated by crosses. In this way, a 
sequence of slots with inserted phases is as follows: U1, W2, V1, U2, W1, V2, if q = 1. 
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Figure 2.6. The simplest three-phase winding that produces a rotating field. a) A cross-sectional surface of the machine 
and a schematic view of the main flux route at the observation instant t1, b) a developed view of the winding in a plane, 
and c) a three-dimensional view of the winding. The figure illustrates how the winding penetrates the machine. The coil 
end at the rear end of the machine is not illustrated as in reality, but the coil comes directly from a slot to another without 
travelling along the rear endface of the stator. The ends of the phases U, V, and W at the terminals are denoted U1-U2, 
V1-V2, and W1-W2. d) The three-phase currents at the observed time instant t1 when iW = iV = -1/2 iU. (iU+iV+iW = 0), 
e) a voltage phasor diagram for the given three-phase system, f) the total phase voltage for individual phases. The 
voltage of the phase U is created by summing the voltage of the slot 1 and the negative voltage of slot 4, and therefore 
the direction of the voltage phasor in the slot 4 is taken opposite with the denotation −4. We can see the sum of voltages 
in both slots and the phase shift by 120° of the V and W phase voltages. 
 
The cross-section of the stator winding in Fig. 2.6a shows fictitious coils with current directions 
resulting in the magnetic field represented by the force lines and arrows. 
 
The phasor diagram in Fig. 2.6e includes six phasors. To determine their number, the largest 
common divider of Q and p denoted t has to be found. In this case, for Q = 6 and p = 1, t = 1, and 
therefore, the number of phasors is Q /t = 6. The angle between the voltage phasors in the adjacent 
slots is given by expression 
 

°=
⋅°

=
°

= 60
6

1360360
u Q

pα , 
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which results in the numbering of the voltage phasors in slots as shown in Fig. 2.6e. Now, the total 
phase voltage for individual phases has to be summed. The voltage of the phase U is created by the 
positive voltage in the slot 1, and the negative voltage in the slot 4. The direction of the voltage 
phasor in the slot 4 is taken opposite with the denotation −4. We can see the sum of voltages in both 
slots of the phase U, and the phase shift of 120° of the V and W phase voltages in Fig. 2.6f. 
 
The current linkage waveforms for this winding are illustrated in Fig. 2.7b and c for the time instants 
t1 and t2, between which the waveforms proceed by 30°. The procedure of drawing the figure can be 
described as follows: We start observation at α = 0. We assume the same constant number of 
conductors zQ in all slots. 
 
The current linkage value on the left in Fig. 2.7b is changed stepwise at the slot 2, where the phase 
W is located and is carrying a current with a cross sign. This can be drawn as a positive step of Θ 
with a certain value (Θ(t1) = iuW(t1)zQ). Now, the current linkage curve remains constant until we 
reach the slot 1, where the positive currents of the phase U are located. The instantaneous current in 
the slot 1 is the phase U peak current. The current sum is indicated again with a cross sign. The step 
height is now twice the height in the slot 2, because the peak current is twice the current flowing in 
the slot 2. Then, in the slot 6, there is again a positive half step caused by the phase V. In the slot 5, 
there is a current sum indicated by a dot, which means a negative Θ step. The same is repeated with 
all slots, and when the whole circle has been closed, Fig. 2.7b. When this procedure is repeated for 
one period of the current, we obtain a travelling wave for the current linkage waveform. Fig. 2.7c 
shows the current linkage waveform after 30 degrees. Here we can see that if the instantaneous value 
of a slot current is zero, the current linkage does not change, and the current linkage remains 
constant; see the slots 2 and 5. We can also see that the Θ profiles in b and c are not similar, but the 
form is changed depending on the time instant at which it is investigated.  
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Figure 2.7. Current linkages Θ created by a simple three-phase q = 1 winding, a) only the phase U is fed by current and 
observed. A rectangular waveform of current linkage with its fundamental component is shown to explicate the staircase 
profile of the current linkages below. If all three phases are fed and observed in two different current situations 
(iU+iV+iW = 0) at two time instants t1 and t2, see b) and c) respectively. The figure illustrates also the fundamental of the 
staircase current linkage curves. The stepped curves are obtained by applying Ampère’s law in the current-carrying teeth 
zone of the electrical machine. Note that as time elapses from t1 to t2, the three phase currents change and also the 
position of the fundamental component changes. This indicates clearly the rotating-field nature of the winding. The 
angle α and the numbers of slots refer to the previous figure, in which we see that the maximum flux density in the air 
gap lies between the slots 6 and 5. This coincides with the maximum current linkage shown in this figure. This is valid if 
no rotor currents are present. 
 
 
Figure 2.7 shows that the current linkage produced with such a simple winding deviates 
considerably from sinusoidal waveform. Therefore, in electrical machines, more coil sides are 
usually employed per pole and phase.  
 
EXAMPLE 2.3: Consider an integral slot winding, where p = 1 and q = 2, m = 3. Distribute the phase 
winding into the slots, make an illustration of the windings in the slots, draw a phasor diagram and 
show the phase voltages of the individual phases. Create a waveform of the current linkage for this 
winding and compare it with that in Fig. 2.7. 
 
SOLUTION: The number of the slots needed for this winding is 122322 =⋅⋅== pmqQ . The cross-
sectional area of such a stator with 12 slots and embedded conductors of individual phases is 
illustrated in Fig. 2.8a. The distribution of the slots into the phases is made in the same order as in 
Example 2.2, but now q = 2 slots per pole and phase. Therefore, the sequence of the slots for the 
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phases is as follows: U1, U1, W2, W2, V1, V1, U2, U2, W1, W1, V2, V2. The direction of the 
current in the slots will be determined in the same way as above in Example 2.2. The coils wound in 
individual phases are shown in Fig. 2.8b. The pole pitch expressed in number of slot pitches is 
 

6
2

12
2Q ===

p
Qy  

 
Figure 2.8c shows how the phase U is wound to keep the full pitch equal to 6 slots. In Fig. 2.8d, the 
average pitch is also 6, but the individual steps are yQ = 5 and 7, which gives the same average result 
for the value of induced voltage.  
 
The phasor diagram has 12 phasors, because t = 1 again. The angle between two phasors of adjacent 
slots is  
 

°=
⋅°

=
°

= 30
12

1360360
u Q

pα  

 
The phasors are numbered gradually around the circle. Based on this diagram, the phase voltage of 
all phases can be found. Figures 2.8f and g show that the voltages are the same independent of the 
way how separate coil sides are connected in series. In comparison with the previous example, the 
geometrical sum is now less than the algebraic sum. The phase shifting between coil side voltages is 
caused by the distribution of the winding in more than one slots, here in two slots per each pole. 
This reduction of the phase voltage is expressed by means of a distribution winding factor; this will 
be derived later. 
 
The waveform of the current linkage for this winding is given in Fig. 2.9. We can see that it is much 
closer to a sinusoidal waveform than in the previous example with q = 1. 
 
In undamped permanent magnet synchronous motors, also such windings can be employed, the 
number of slots per pole and phase of which is clearly less than one, for instance q = 0.4. In that 
case, a well-designed machine looks like a rotating-field machine when observed at its terminals, but 
the current linkage produced by the stator winding deviates so much from the fundamental that, 
because of excessive harmonic losses in the rotor, no other rotor type comes into question.  
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Figure 2.8. Three-phase two-pole winding with two slots per pole and phase, a) a stator with 12 slots, the number of slots 
per pole and phase q = 2. b) Divided coil groups, c) full-pitch coils of the phase U, d) average full-pitch coils of phase U, 
e) a phasor diagram with 12 phasors, one for each slot, f) sum phase voltage of individual phases corresponding to Fig. 
c, g) a sum phase voltage of individual phases corresponding to Fig. d. 
 
Θ/A

200

100
s1Θ̂

α

5    4    3    2     1    12  11  10    9     8     7    6    5    4     3    2    1 
 

Figure 2.9. Current linkage ( )αΘ f=s  created by the winding on the surface of the stator bore of Fig. 2.8 at a time iW = 
iV = −1/2 iU. The fundamental ss1  of ΘΘ is given as a sinusoidal curve. The numbering of the slots is also given. 
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When comparing Fig. 2.9 (q = 2) with Fig. 2.7 (q = 1), it is obvious that the higher the term q (slots 
per pole and phase) is, the more sinusoidal the current linkage of the stator winding is.  
 
As we can see in Fig. 2.7a, the current linkage amplitude of the fundamental component for one full-
pitch coil is 

2

ˆ

π
4ˆ UQ

U1

iz
=Θ .         (2.6) 

If the coil winding is distributed into more slots, and q > 1 and N = pqzQ, the winding factor must be 
taken into account: 

2
ˆ

π
4ˆ Uw1

1U
iNk

=Θ .        (2.7) 

In a 2p-pole machine (2p>2), the current linkage for one pole is: 

p
iNk

2

ˆ

π
4ˆ Uw1

1U =Θ .        (2.8) 

 
This expression can be rearranged with the number of conductors in a slot. In one phase, there are 
2N conductors, and they are embedded in the slots belonging to one phase Q/m. Therefore, the 
number of conductors in one slot will be: 
 

pq
N

pqm
mN

mQ
Nz ===

2
2

/
2

Q        (2.9) 

and  
 

Qqz
p
N

=          (2.10) 

 
Then N/p presented in Eq. (2.8) and in the following can be introduced by qzQ.: 
  

2

ˆ

π
4

2

ˆ

π
4ˆ Uw1

Q
Uw1

1U
ikqz

p
iNk

==Θ .      (2.11) 

 
It can be also expressed with the effective value of sinusoidal phase current if there is a symmetrical 
system of phase currents: 

I
p

Nk 2
2π

4ˆ w1
1U =Θ .        (2.12) 

For an m-phase rotating-field stator or rotor winding, the amplitude of current linkage is m/2 times 
higher: 

I
p

Nkm 2
2π

4
2

ˆ w1
1 =Θ         (2.13) 

and for three-phase stator or rotor winding, the current linkage amplitude of the fundamental 
component for one pole is: 

I
p

NkI
p

Nk 2
π
32

2π
4

2
3ˆ w1w1

1 ==Θ       (2.14) 
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For a stator current linkage amplitude νΘs
ˆ  of the harmonic ν of the current linkage of a poly-phase 

(m > 1) rotating-field stator winding (or rotor winding), when the effective value of the stator current 
is Is, we may write 
 

 s
sw

s
sw

s
ˆ

π
2

2
1

π
4

2
ˆ i

p
Nmk

I
p

Nkm
νν

Θ νν
ν == .     (2.15) 

 
EXAMPLE 2.4: Calculate the amplitude of the fundamental component of stator current linkage, if 
Ns= 200, 1wk  = 0.96, m = 3, p = 1 and ( ) A 1ˆ

sU == iti , the effective value for a sinusoidal current 

being ( )2/1s =I  A = 0.707 A. 
 
SOLUTION: For the fundamental, we obtain s1Θ̂  = 183.3 A, because: 
 

3.183A707.02
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96.0200
π
32

π
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2
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s
w1
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⋅
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p
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Θ  A. 

 
 

2.4 Voltage Phasor Diagram and Winding Factor 
 

Since the winding is spatially distributed in the slots on the stator surface, the flux (which is 
proportional to the current linkage Θ) penetrating the winding does not intersect all windings 
simultaneously, but with a certain phase shift. Therefore, the electromotive force (emf) of the 
winding is not calculated directly with the number of turns Ns, but the winding factors kwν 
corresponding to the harmonics are required. The emf of the fundamental induced in the turn is 
calculated with the flux linkage Ψ by applying Faraday’s induction law ttNke /ddd/d1w ΨΦ −=−=  
(see Eqs. 1.3, 1.7 and 1.8) We can see that the winding factor correspondingly indicates the 
characteristics of the winding to produce harmonics, and it has thus to be taken into account when 
calculating the current linkage of the winding (Eq. 2.15). The common distribution of all the current 
linkages created by all the windings together produces a flux density distribution in the air gap of the 
machine, which, when moving with respect to the winding, induces voltages to the conductors of the 
winding. The phase shift of the induced electromotive force in different coil sides is investigated 
with a voltage phasor diagram. The voltage phasor diagram is presented in electrical degrees. If the 
machine is for instance a four-pole one, p = 2, the voltage vectors have to be distributed along two 
full circles in the stator bore. Figure 2.10 a) illustrates the voltage phasor diagram of a two-pole 
winding of Fig. 2.8.  
 
In Fig. 2.10a, the phasors 1 and 2 are positive and 7 and 8 are negative for the phase under 
consideration. Hence, the phasors 7 and 8 are turned by 180 degrees to form a bunch of phasors. For 
harmonic ν (excluding slot harmonics that have the same winding factor as the fundamental) the 
directions of the phasors of the coil sides vary more than in the figure, because the slot angles αu are 
replaced with the angles ναu.  
 
According to Fig. 2.10b, when calculating the geometric sum of the voltage phasors for a phase 
winding, the symmetry line for the bunch of phasors, where the negative phasors have been turned 
opposite, must be found. The angles αρ of the phasors with respect to this symmetry line may be 
used in the calculation of the geometric sum. Each phasor contributes to the sum with a component 
proportional to cosαρ. 
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Figure 2.10. a) and b) Fundamental voltage phasor diagram for the winding of Fig. 2.8 Qs = 12, p = 1, qs = 2. A 
maximum voltage is induced in the bars in the slots 1 and 7 at the moment depicted in the figure, when the rotor is 
rotating clockwise. The figure illustrates also the calculation of the voltage in a single coil with the radii of the voltage 
phasor diagram. c) General application of the voltage phasor diagram in the determination of the winding factor 
(fractional slot winding since the number of phasors is uneven). The phasors of negative coil sides are turned 180°, and 
then the summing of the resulting bunch of phasors is calculated according to Eq. (2.16). A symmetry line is drawn in 
the middle of the bunch, and each phasor forms an angle αρ with the symmetry line. The geometric sum of all the 
phasors lies on the symmetry line.  
 
We can now write a general presentation for the winding factor kwν of a harmonic ν , by employing 
the voltage phasor diagram 
 

 ∑
=

=
Z

ρ
ρZ

k
1

wν cos2
πsin

α

ν

.       (2.16) 

 
Here Z is the total number of positive and negative phasors of the phase in question, ρ is the ordinal 
number of a single phasor, and ν is the ordinal number of the harmonic under observation. The 

coefficient 2
πsin ν  in the equation only influences the sign (of the factor). The angle of a single 

phasor αρ can be found from the voltage phasor diagram drawn for the specific harmonic, and it is 
the angle between an individual phasor and the symmetry line drawn for a specific harmonic (c.f. 
Fig. 2.10b). This voltage vector diagram solution is universal and may be used in all cases, but the 
numerical values of Eq. (2.16) do not always have to be calculated directly from this equation, or 
with the voltage phasor diagram at all. In simple cases, we may apply equations introduced later. 
However, the voltage phasor diagram forms the basis for the calculations, and therefore its 
utilization is discussed further when analyzing different types of windings. 
 
If we are in Fig. 2.10a considering a currentless stator of a synchronous machine, a maximum 
voltage can be induced to the coil sides 1 and 7 at the middle of the pole shoe, when the rotor is 
rotating at no load inside the stator bore (which corresponds to the peak value of the flux density, 
but the zero value of the flux penetrating the coil), where the derivative of the flux penetrating the 
coil reaches its peak value, the voltage induction being at its highest at that moment. If the rotor 
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rotates clockwise, a maximum voltage is induced in the coil sides 2 and 8 in a short while, and so 
on. The voltage phasor diagram then describes the amplitudes of voltages induced in different slots 
and their temporal phase shift. 
 
The series-connected coils of the phase U travel e.g. from the slot 1 to the slot 8 (coil 1) and from 
the slot 2 to the slot 7 (coil 2). Thus a voltage, which is the difference of the phasors 1U and 8U , is 
induced in the coil 1. The total voltage of the phase is thus  
 
 7281U UUUUU −+−= .       (2.17) 
 
The figure also indicates the possibility of connecting the coils in the order 1–7 and 2–8, which 
gives the same voltage but a different end winding. The winding factor 1wk  based on the distribution 
of the winding for the fundamental is calculated here as a ratio of the geometric sum and the sum of 
absolute values as follows: 
 

 1966.0
7281

7281
1w ≤=

+++
−+−

==
UUUU

UUUU
valuesabsoluteofsum

sumgeometrick .  (2.18) 

 
EXAMPLE 2.5: Equation (2.16) indicates that the winding factor for the harmonics may also be 
calculated using the voltage phasor diagram. Derive the winding factor for the seventh harmonic of 
the winding in Fig 2.8. 
 
SOLUTION: We now draw a new voltage phasor diagram based on Fig. 2.10 for the seventh 
harmonic, Fig. 2.11. 
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Fig. 2.11. Deriving the harmonic winding factor, a) the fundamental and the seventh harmonic field in the air gap over 
the slots, b) voltage phasors for the seventh harmonic of a full pitch q = 2 winding (slot angle αu7 = 210°), and c) the 
symmetry line and the sum of the voltage phasors. The phasor angles αρ with respect to the symmetry line are αρ = 
5π/12 or −5 π /12.  
 
The slots 1 and 2 belong to the positive zone of the phase U and the slots 7 and 8 to the negative 
zone measured by the fundamental. In Fig. 2.11, we see that the pole pitch of the seventh harmonic 
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is one seventh of the fundamental pole pitch. Deriving the phasor sum for the seventh harmonic is 
started for instance with the voltage phasor of the slot 1. This phasor remains in its original position. 
The slot 2 is physically and by fundamental located 30° clockwise from the slot 1, but as we are now 
studying the seventh harmonic, the slot angle measured in degrees for it is 7×30°=210°, which can 
also be seen in the figure. The phasor for the slot 2 is, hence, located 210° from the phasor 1 
clockwise. The slot 7 is located at 7×180°=1260° from the slot 1. Since 1260° = 3×360° + 180° the 
phasor 7 remains opposite to the phasor 1. The phasor 8 is located 210° clockwise from the phasor 7 
and will find its place 30° clockwise from the phasor 1. By turning the negative zone phasors by π 
and applying Eq. (2.17) we obtain 
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= − 0.2588. 

 
It is not necessary to apply the voltage phasor diagram, but also simple equations may be derived to 
directly calculate the winding factor. In principle, we have three winding factors: a distribution 
factor, a pitch factor, and a skewing factor. The latter may also be taken into account by a leakage 
inductance. The winding factor derived based on the shifted voltage phasors in the case of 
distributed winding is called the distribution factor with the subscript ‘d’. This factor is always kd1≤ 
1. The value kd1 = 1 can be reached when q = 1, in which case the geometric sum equals the sum of 
absolute values, see Fig. 2.6f. If q ≠ 1, then .1d1 <k In fact, it means that the total phase voltage is 
reduced by this factor (see Example 2.6).  
 
If each coil is wound as a full-pitch winding, the coil pitch is in principle the same as the pole pitch. 
However, the voltage of the phase with full-pitch coils is reduced because of the winding 
distribution with the factor kd. If the coil pitch is shorter than the pole pitch and the winding is not a 
full-pitch winding, the winding is called a short-pitch winding, or a chorded winding (see Fig. 2.15). 
Note that the winding in Fig. 2.8 is not a short-pitch winding, even though the coil may be realized 
from the slot 1 to the slot 8 (shorter than pole pitch) and not from the slot 1 to the slot 7 (equivalent 
to pole pitch). This is because the full-pitch coils together produce the same current linkage as the 
shorter coils together. A real short-pitching is obviously employed in the two-layer windings. Short-
pitching is another reason why the voltage of the phase winding may be reduced. The factor of such 
reduction is called the pitch factor kp. The total winding factor is given as: 
 

pdw kkk ⋅= .         (2.19) 
 
Equations to calculate the distribution factor kd will be derived now; see Fig. 2.12. The equations are 
based on the geometric sum of the voltage phasors in a similar way as in Figs. 2.10 and 2.11. 
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Figure 2.12. a) Determination of the distribution factor with a polygon with q = 5, b) the pole pitch for the fundamental 
and the fifth harmonic. The same physical angles for the fifth and the fundamental are shown as an example. 
 
The distribution factor for the fundamental component is given as 
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l
1d qU

U
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According to Fig. 2.12, we may write for the triangle ODC 
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and for the triangle OAB 
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We may now write for the distribution factor 
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This is the basic expression for the distribution factor for the calculation of the fundamental in a 
closed form. Since the harmonic components of the air gap magnetic flux density are present, the 
calculation of the distribution factor for the νth harmonic will be carried out applying the angle ναu; 
see Fig. 2.11b and 2.12b: 
 

2
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EXAMPLE 2.6: Repeat Example 2.5 using Eq. (2.24) 
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SOLUTION: 2588.0

12
π7sin2

6
π7sin

26
π7sin2

2
6
π2

7sin

2
sin

2
sin

u

u

dν −==

⋅

==
αν

αν

q

q
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The expression for the fundamental may be rearranged: 
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For three-phase machines m = 3, the expression is as follows: 
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This simple expression of the distribution factor for the fundamental is most often employed for 
practical calculation. 
 
EXAMPLE: 2.7 Calculate the phase voltage of a three-phase four-pole synchronous machine with 
the stator bore diameter of 0.30 m, the length of 0.5 m, and the speed of rotation 1500 rpm. The 
excitation creates the air gap fundamental flux density T8.0ˆ

1δ =B . There are 36 slots, in which a 
one-layer winding with three conductors in each slot is embedded.  
 
SOLUTION: According to the Lorentz law, an instantaneous value of the induced electric field 
strength in a conductor is .oBvE ×=  In one conductor embedded in a slot of an AC machine, we 
may get the induced voltage by integrating: vlBe 'δ1c =  where Bδ is the local air- gap flux density 
value of the rotating magnetic field, l' is the effective length of the of stator iron stack, and v is the 
speed at which the conductor travels in the magnetic field, see Fig 2.13. 
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Figure 2.13 a) Flux density variation in the air gap. One flux density period travels two pole pitches during one time 
period T. b) The flux distribution over one pole and the conductors in slots. 
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During one period T, the magnetic flux density wave travels two pole pitches, as it is shown in the 
figure above. The speed of the magnetic field moving in the air gap is  

.2
2

p
p f

T
v τ

τ
==  

The effective value of the induced voltage in one conductor is: 

.2'
2

ˆ
p

δ
1c flBE τ=  

Contrary to a transformer, where approximately the same value of magnetic flux density penetrates 
all the winding turns, Fig 2.11 shows that in AC rotating-field machines, the conductors are subject 
to the sinusoidal waveform of flux density, and each conductor is in a different value of magnetic 
flux density. Therefore, an average value of the magnetic flux density is calculated to unify the 
value of the magnetic flux for all conductors. The average value of the flux density produces the 
maximum value of the flux penetrating a full-pitch winding: 
 

.'ˆ
pavδ τΦ lB=  

Bδ is spread over the pole pitch τp, and we get for the average value  

.
2
πˆˆ

π
2

δavδδδav BBBB =⇒=  

Now, the effective average value of the voltage induced in a conductor written by means of average 
magnetic flux density is: 

.ˆ
2
π2'

22
π

pδavc fflBE Φτ ==  

The frequency f is found by the speed n 
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The information about three conductors in each slot can be used for calculating the number of turns 
N in series. In one phase, there are 2N conductors, and they are embedded in the slots belonging to 
one phase Q/m. Therefore, the number of conductors in one slot zQ will be: 
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In this case, the number of turns in series in one phase is 183233 =⋅⋅== pqN . The effective value 

of the induced voltage in one slot is cE
pq
N . The number of such slots is 2pq. The linear sum of the 

voltages of all conductor belonging to the same phase must be reduced by the winding factor to get 

the phase voltage Eph = wc 2 pkqE
pq
N . The final expression for the effective value of the induced 

voltage in the AC rotating machine is .ˆπ22ˆ
2
π2 w1w1w1cph Nkfpkq

pq
Nfpkq
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NEE ΦΦ ===  In 
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this example, there is a full-pitch one-layer winding, and therefore kp = 1, and only kd must be 
calculated:  
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The maximum value of the magnetic flux is: 060.05.0236.08.0
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τ  m. An effective value of the phase induced voltage is: 

23096.018060.050π2ˆπ2 dph =⋅⋅⋅⋅== NkfE Φ  V. 
 
EXAMPLE 2.8: A stator of a four-pole three-phase induction motor has 36 slots, and it is fed by 
3×400/230 V, 50 Hz. The diameter of the stator bore is Ds = 15 cm and the length lFe = 20 cm. A 
two-layer winding is embedded in the slots. Besides this, there is a one-layer, full-pitch, search coil 
embedded in two slots. In the no-load condition, a voltage of 11.3 V has been measured at its 
terminals. Calculate the air gap flux density, if the voltage drop on the impedance of the search coil 
can be neglected. 
 
SOLUTION: To be able to investigate the air gap flux density, the data of the search coil can be 
used. This coil is embedded in two electrically opposite slots, and therefore the distribution factor kd 
= 1; because it is a full-pitch coil, also the pitch factor kp = 1, and therefore kw = 1.  
 

Now, the maximum value of magnetic flux is: 0127.0Wb
0.1450π2

3.11
π2

ˆ
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⋅⋅⋅

==
kNf
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The amplitude of the air gap flux density is: 
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2.5 Winding Analysis 
 
The winding analysis starts with the analysis of a single-layer stator winding, in which the number 
of coils is Qs/2. In the machine design, the following setup is advisable: The periphery of the air gap 
of the stator bore (diameter Ds) is distributed evenly in all poles, that is, 2p of equal parts, which 
yields the pole pitch τp. Figure 2.14 illustrates the configuration of a two-pole slot winding (p = 1). 
 
The pole pitch is evenly distributed in all stator phase windings, that is, in ms equal parts. Now we 
obtain a zone distribution τsv. In Fig. 2.14, the number of stator phases is ms = 3. The number of 
zones becomes thus 2pms = 6. The number of stator slots in a single zone is qs, which is the number 
of slots per pole and phase in the stator. By using stator values in the general Eq. (2.5), we obtain  
 

 
s

s
s 2 mp

Qq = .         (2.27) 
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If qs is an integer, the winding is termed an integral slot winding, and if qs is a fraction, the winding 
is called a fractional slot winding. 
 
The phase zones are labelled symmetrically to the phase windings, and the directions of currents are 
determined so that we obtain a number of ms magnetic axes at the distance of 360o/ ms from each 
other. The phase zones are labelled as stated in 2.2. The positive zone of the phase U, that is, a zone 
where the current of the phase U is flowing away from the observer, is set as an example (Figure 
2.14). Now the negative zone of the phase U is at the distance of 180 electrical degrees, in other 
words, electrically on the opposite side. The conductors of respective zones are connected so that the 
current flows as desired. This can be carried out for instance as illustrated in the figure below. In the 
figure, it is assumed that there are three slots in each zone, qs = 3. The figure shows that the 
magnetic axis of the phase winding U is to the direction of the arrow drawn in the middle of the 
illustration. Because this is a three-phase machine, the directions of the currents of the phases V and 
W have to be such that the magnetic axes of the phases V and W are at the distance of 120° 
(electrical degrees) from the magnetic axis of the phase U. This can be realized by setting the zones 
of the V and W phases and the current directions according to Fig. 2.14. 
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Figure 2.14. a) Three-phase stator diamond winding p = 1, qs = 3, Qs = 18. Only the coil end on the side of observation is 
visible of the U phase winding. The figure also illustrates the positive magnetic axes of the phase windings U, V, and W. 
The current linkage creates a flux in the direction of the magnetic axis when the current is penetrating the winding at its 
positive terminal, e.g. U1. The current directions of the figure depict a situation in which the current of the windings V 
and W is a negative half of the current in the winding U. b) The created current linkage distribution Θs is shown at the 
moment, when its maximum is in the direction of the magnetic axis of the phase U. The small arrows in Fig. 2.14a at the 
end winding indicate the current directions and the transitions from coil to coil. The same winding will be observed in 
Fig. 2.23. 
 
The way how the conductors of different zones are connected produces different mechanical 
winding constructions, but the air gap remains similar irrespective of the mechanical construction. 
However, the arrangement of connections has a significant influence on the space requirements for 
the end windings, the amount of copper and the production costs of the winding. The connections 
also have an effect on certain electric properties, such as the leakage flux of the end windings.  

 
The poly-phase winding in the stator of a rotating-field machine creates a flux wave when a 
symmetric poly-phase current flows in the winding. A flux wave is created for instance when the 
current linkage of Fig. 2.14 begins to propagate in the direction of the positive α-axis, and the 
currents of the poly-phase winding are alternating sinusoidally as a function of time. We have to 
note, however, that the propagation speeds of the harmonics created by the winding are different 
from the speed of the fundamental (nsν= ± ns1/ν), and therefore the shape of the current linkage curve 
changes as a function of time. However, the fundamental propagates in the air gap at a speed defined 
by the fundamental of the current and by the number of pole pairs. Furthermore, the fundamental is 
usually dominating (when q ≥ 1), and thus the operation of the machine can be analyzed basically 
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with the fundamental. For instance in a three-phase winding, time-varying sinusoidal currents with a 
120° phase shift in time create a temporally and positionally alternating flux in the windings that are 
distributed at the distances of 120 electrical degrees. The flux distribution propagates as a wave on 
the stator surface. (See e.g. Fig. 7.7 illustrating the fundamental ν = 1 of a six-pole and a two-pole 
machine.)  
 

2.6 Short-Pitching 
 
In a double-layer diamond winding, the slot is divided into an upper and a lower part, and there is 
one coil side in each half slot. The coil side at the bottom of the slot belongs to the bottom layer of 
the slot, and the coil side adjacent to the air gap belongs to the upper layer. The number of coils is 
now the same as the number of slots Qs of the winding; see Fig. 2.15b. 
 
A double-layer diamond winding is constructed like the single-layer winding. As illustrated in Fig. 
2.15, there are two zone rings, the outer illustrating the bottom layer and the inner the upper layer, 
Fig. 2.15a. The distribution of zones does not have to be identical in the upper and bottom layer. 
The zone distribution can be shifted by a multiple of the slot pitch. In Fig. 2.15a, a single zone shift 
equals to a single slot pitch. Figure 2.15b illustrates one of the coils of the phase U. By comparing 
the width of the coil to the coil span of the winding in Fig. 2.14, we can see that the coil is now one 
pole pitch narrower; the coil is said to be short pitched. Because of short-pitching, the coil end has 
become shorter, and the copper consumption is thus reduced. On the other hand, the flux linking the 
coil decreases somewhat because of short-pitching, and therefore the number of coil turns at the 
same voltage has to be higher than for a full-pitch winding. The short-pitching of the coil end is of 
more significance than the increased number of coil turns, and as a result, the consumption of coil 
material decreases.  
 
Short-pitching also influences the harmonics content of the flux density of the air gap. A correctly 
short-pitched winding produces a more sinusoidal current linkage distribution than a full-pitch 
winding. In a salient pole synchronous generator, where the flux density distribution is basically 
governed by the shape of pole shoes, a short-pitch winding produces a more sinusoidal pole voltage 
than a full-pitch winding.  
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Fig. 2.15. a) Three-phase double-layer diamond winding Qs = 18, qs = 3, p = 1. One end winding is shown to illustrate 
the coil span. The winding is created from the previous winding by dividing the slots into upper and bottom layers and 
by shifting the bottom layers clockwise by a single pole pitch. The magnetic axes of the new short-pitched winding are 
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also shown. b) A coil end of a double-layer winding produced of preformed copper, coil span W or expressed in numbers 
of slot pitches y. The coil ends start from the left at the bottom of the slot and continue to the right to the top of the slot.  
 
Figure 2.16 illustrates the basic difference of a short-pitch winding and a full-pitch winding. 
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Figure 2.16. Cross-sectional areas of two machines with 12 slots. The basic differences of a) a two-pole full-pitch 
winding and b) a two-pole short-pitch winding. In the short-pitch winding, the width of a single coil W is less than the 
pole pitch τp or expressed in the number of slots the short pitch y is less than a full pitch yQ. The voltage U1-6 is lower 
than U1-7. The short-pitched coil is located on the chord of the periphery, and therefore the winding type is also called a 
chorded winding. The coil without short-pitching is located on the diameter of the machine.  
 
The short-pitch construction is now investigated in more detail. Short-pitching is commonly created 
by winding step shortening (Fig. 2.17b), coil side shift in a slot (Fig. 2.17c), and coil side transfer to 
another zone (Fig. 2.17d). In Fig. 2.17, the zone graphs illustrate the configurations of a full-pitch 
winding and of the short-pitch windings constructed with the above-mentioned methods. Of these 
methods, the step shortening can be considered to be created from a full-pitch winding by shifting 
the upper layer left for a certain number of slot pitches.  
 
Coil side shift in a slot is generated by changing the coil sides of the upper and bottom layers in 
certain slots of a short pitch winding. For instance if in Fig. 2.17 b, the coil sides of the bottom layer 
in the slots 8 and 20 are removed to the upper layer, and in the slots 12 and 24, the upper coil sides 
are shifted to the bottom layer, we get the winding of Fig 2.17c. Now, the width of a coil is again 

pτ=W , but because the magnetic voltage of the air gap does not depend on the position of a single 
coil side, the magnetizing characteristics of the winding remains unchanged. The windings with a 
coil side shift in a slot and winding step shortening are equal in this respect. The average number of 
slots per pole and phase for windings with a coil side shift in a slot is 
 

22
21s

s
qq

mp
Qq +

== , jqqjqq −=+= 21 ;       (2.28) 

 
where j is the difference of q (the numbers of slots per pole and phase) in different layers. In Fig. 
2.17, j = 1.  
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Figure 2.17. Different methods of short-pitching for a double-layer winding; a) full-pitch winding, b) winding step 
shortening, c) coil side shift in a slot, d) coil side transfer to another zone. τv $= zone, τu $= slot pitch, W $= coil span. x 
$= coil span decrease. In the figure, a cross sign indicates one coil end of the phase U, and the dot indicates the other coil 

end of the phase U. In the graph for a coil side transfer to another zone, the grid indicates the parts of slots filled with the 
windings of the phase W. 
 
Coil side transfer to another zone (Fig 2.17d) can be considered to be created from the full-pitch 
winding of Fig. 2.17a by transferring the side of the upper layers of 2 and 14 to a foreign zone W. 
There is no general rule for the transfer, but practicality and the purpose of use decide the solution to 
be selected. The method may be adopted in order to cancel a certain harmonic from the current 
linkage of the winding. 
 
The above-described methods can also be employed simultaneously. For instance, if we shift the 
upper layer of the coil with a coil side transfer of Fig. 2.17d left for the distance of one slot pitch, we 
receive a combination of a winding step shortening and a coil side transfer. This kind of winding is 
double short pitched, and it can eliminate two harmonics. This kind of short-pitching is often 
employed in machines where the windings may be rearranged during drive to form another pole 
number.  
 
When different methods are compared, we have to bear in mind that when considering the 
connection, a common winding step shortening is always the simplest to realize, and the 
consumption of copper is often the lowest. A winding step shortening is an advisable method down 
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to p8.0 τ=W  without an increase in copper consumption. In short two-pole machines, the ends are 
relatively long, and therefore it is advisable to use even shorter pitches to make the end winding area 
shorter. Short-pitchings down to p7.0 τ=W  are used in two-pole machines with prefabricated coils. 
The most crucial issue concerning short pitching is, however, how completely we wish to eliminate 
the harmonics. This is best investigated with winding factors.  
 
The winding factor kwν was already determined with Fig. 2.10 and Eq. (2.16). When the winding is 
short pitched, and the coil ends are not at a distance of 180 electrical degrees from each other, we 
can easily understand that short-pitching reduces the winding factor of the fundamental. This is 
described with a pitch factor kpν. Further, if the number of slots per pole and phase is higher than 1, 
we can see that in addition to the pitch factor kpν, the distribution factor kdν is required as it was 
discussed above. Thus, we can consider the winding factor to consist of the pitch factor kpν and the 
distribution factor kdν and is some cases, of a skewing factor (c.f. Eq. 2.35).  
 
The full pitch can be expressed in radians as π, as a pole pitch τp, or in the number of slot pitches yQ 
covering the pole pitch. The pitch expressed in the number of slots is y, and now the relative 
shortening is y / yQ .Therefore, the angle of the short pitch is (y / yQ) π. A complement to π, which is 
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y . Also the pitch factor is defined as a ratio of the 

geometric sum of phasors and the sum of the absolute values of the voltage phasors, see Fig.2.16b: 
The pitch factor is 
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 is expressed in the triangle analyzed, it will be found that it equals 
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After rearranging the final expression for the pitch factor will be obtained:  
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In a full-pitch winding, the pitch is equal to the pole pitch, y = yQ, W = τp and the pitch factor is kp = 
1. If the pitch is less than yQ, kp < 1. 
 
In a general presentation, the distribution factor kdν and the pitch factor kpν have to be valid also for 
harmonic frequencies. We may write for the νth harmonic, the pitch factor kpν, and the distribution 
factor kdν  
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Here uα  is the slot angle, Qp /π2u =α . 
 
The skewing factor will be developed in Chapter 4, but it is shown here 
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Here the skew is measured as s/τp (c.f. Fig. 2.16). 
 
The winding factor is thus a product of these factors  
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EXAMPLE 2.9: Calculate a winding factor for the two-layer winding Q = 24, 2p = 4, m = 3, y = 5, 
(see Fig 2.17 b). There is no skewing, i.e. kskν = 1. 
 

SOLUTION: The number of slots per phase per pole is 2
34
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for the three-phase winding is 966.0
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in the other words, the pole pitch expressed in the number of slots: 6
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5 slots, it means that it is a short pitch, and it is necessary to calculate the pitch factor:  
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933.01966.0966.0sk1p1dw1 =⋅⋅== νkkkk . 

 
EXAMPLE 2.10: A two-pole alternator has on the stator a three-phase two-layer winding embedded 
in 72 slots, two conductors in each slot, with a short pitch of 29/36. The diameter of the stator bore 
is Ds = 0.85 m, the effective length of the stack is l' = 1.75 m. Calculate the fundamental component 
of the induced voltage in one phase of the stator winding, if the amplitude of the fundamental 
component of the air gap flux density is δ1B̂  = 0.92 T and the speed of rotation is 3000 min-1. 
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SOLUTION: The effective value of the induced phase voltage will be calculated from the 
expression 1ws11ph
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short-pitch winding, and therefore both the distribution and pitch factors must be calculated (c.f. Eq. 
2.26): 
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induced phase voltage of the stator is: 663791.024Vs368.1
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On the other hand, as it was shown previously, the winding constructed with the coil side shift in a 
slot in Fig. 2.17c proved to have an identical current linkage as the winding step shortening 2.17b, 
and therefore also its winding factor has to be same. The distribution factor kdν is calculated with an 
average number of slots per pole and phase q = 2, and thus the pitch factor kpν has to be the same as 
above, although no actual winding step shortening has been performed. For coil side shift in a slot, 
Eq. (2.32) is not valid as such for the calculation of pitch factor (because sin(ν π/2) = 1). 
 
When comparing magnetically equivalent windings of Fig. 2.17 that apply winding step shortening 
and coil side shift in a slot, it is shown that an equivalent reduction x of the coil span for a winding 
with coil side shift is 
 

 u21p )(
2
1 ττ qqWx −=−= .       (2.36) 

 
The substitution of slot pitch τu = 2pτp/Q in the equation yields  
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In other words, if the number of slots per pole and phase of the different layers of coil side shift are 
q1 and q2, the winding corresponds to the winding step shortening in the ratio of W/τp. By 
substituting (2.37) in Eq. (2.32) we obtain a pitch factor kpwν of the coil side shift in a slot 
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In the case of the coil side shift of Fig. 2.17c, q1 = 3 and q2 = 1. We may assume the winding to be a 
four-pole construction as a whole (p = 2, Qs = 24). In the figure, a basic winding is constructed of 
the conductors of the first twelve slots (the complete winding may comprise an undefined number of 
sets of twelve-slot windings in series), and thus we obtain for the fundamental winding factor  
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Which is the same result of Eq. (2.32) in the case of a winding step shortening of Fig. 2.17b. 
 
Because we may often apply both the winding step shortening and coil side transfer in a different 
zone in the same winding, the winding factor has to be rewritten 
 
 νννν ppwdw kkkk = .        (2.39) 
 
With this kind of a doubly short-pitched winding, we may eliminate two harmonics, as stated earlier. 
The elimination of harmonics implies that we select a double-short pitched winding for which for 
instance kpw5 = 0 and kp7 = 0. Now we can eliminate the undesirable fifth and seventh harmonics. 
However, the fundamental winding factor will get smaller. The distribution factor kdν is now 
calculated with the average number of slots per pole and phase q = (q1 + q2)/2.  
 
When analyzing complicated short-pitch arrangements, it is often difficult to find a universal 
equation for the winding factor. In that case, a voltage phasor diagram can be employed, as 
mentioned earlier in the discussion of Fig. 2.10. Next, the coil side transfer to another zone of Fig. 
2.17 is discussed. 
 
Figure 2.18a depicts the fundamental voltage phasor diagram of the winding with coil side transfer 
to another zone in Fig. 2.17, assuming that there are Q = 24 slots and 2p = 4 poles. The slot angle is 
now αu = 30 electrical degrees, and thus the phase shift of the emf is 30°. Figure 2.18b depicts the 
phasors of the phase U in a polygon according to the Fig. 2.17d. The resultant and its ratio to the 
sum of the absolute values of the phasors is the fundamental winding factor. By drawing also the 
resultants of the windings V and W from point 0, we obtain an illustration of the symmetry of a 
three-phase machine. The other harmonics (ordinal ν) are treated equally, but the phase shift angle 
of the phasors is now ναu. 
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Figure 2.18. Voltage phasor 
diagram of a four-pole winding 
with a coil side transfer (Fig. 
2.17d) and b) the sum of slot 
voltage phasors of a single 
phase. Note that the voltage 
phasor diagram for a four-pole 
machine (p = 2) is doubled, 
because it is drawn in electrical 
degrees. The parts of the figure 
are in different scales. In the 
voltage phasor diagram, there 
are in principle two layers (one 
for the bottom layer and another 
for the top layer), but only one 
of them is illustrated here. Now 
two consequent phasors, e.g. 2 
and 14, when placed one after 
another, form a single radius of 
the voltage phasor diagram. The 
winding factor is thus defined 
with the voltage phasor diagram 
by comparing the geometrical 
sum to the sum of absolute 
values. 
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2.7 Current Linkage of a Slot Winding  
 
Current linkage of a slot winding refers to a function Θ = f(α), created by the winding and its 
currents to the equivalent air gap of the machine. The winding of Fig. 2.8 and its current linkage in 
the air gap are investigated at a time when iW = iV = −½iU, Fig. 2.9. The curve function in the figure is 
drawn at time t = 0. The phasors of the phase currents rotate at an angular speed ω, and thus after a 
time 2π/(3ω) = 1/(3f) the current of the phase V has reached its positive peak, and the function of 
current linkage has shifted three slot pitches to the right. After a time 2/(3f), the shift is six slot 
pitches and so on. The curve function shifts constantly to the direction +α. To be exact, the curve 
waveform is of the form presented in the figure only at times t = c/(3f), when the factor c is of the 
values c = 0, 1, 2, 3, ... . As the time elapses, the waveform proceeds constantly. The Fourier 
analysis of the waveform, however, produces harmonics that remain constant. 
 
Figure 2.19 illustrates the current linkage Θ (α) produced by a single coil at a single pole pitch. A 
flux that passes through the air gap at an angle γ returns at an angle β = π − γ. In the case of a non-
full-pitch winding, the current linkage is distributed in the ratio of the permeances of the paths. This 
gives us a pair of equations 
 

 
γ
β

Θ
Θ

ΘΘ =+=
β

γ
βγQ  ;iz ,       (2.40) 

 
from which we obtain two constant values for the current linkage waveformΘ (α) 
 

 iziz QβQγ π
 ;

π
γΘβΘ == .       (2.41) 
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The Fourier series of the function Θ (α) of a single coil is 
 
 ( ) ...cosˆ...5cosˆ3cosˆcosˆ

531 +++++= ναΘαΘαΘαΘαΘ ν    (2.42) 
 
The magnitude of the ν th term of the series is obtained from the equation by substituting the 
function of the current linkage waveform for a single coil 
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As p2π/2/ τγ =W , and hence ( ) ( )π/2/2/ p ⋅= τγ W  the last factor of Eq. (2.43) 
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is the pitch factor of the harmonic ν for the coil observed. For the fundamental ν = 1, we obtain kp1. 
We can thus see that the fundamental is just a special case of the general harmonicν. While the 
electrical angle of the fundamental is α, the corresponding angle for the harmonic ν is always να. If 
now νγ/2 is a multiple of the angle 2π, the pitch factor becomes kpν = 0. Thus, the winding does not 
produce such harmonics, neither are voltages induced to the winding by the influence of possible 
flux components at this distribution. However, voltages are induced to the coil sides, but in the 
whole coil these voltages compensate each other. Thus, with a suitable short-pitching, it is possible 
to eliminate harmful harmonics. 
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         a)      b) 
 

Figure 2.19. a) Currents and schematic flux lines of a short-pitch coil in a two-pole system. b) Two wavelengths of the 
current linkage created by a single, narrow coil.  
 
In Fig. 2.20, there are several coils 1 ... q in a single pole of a slot winding. The current linkage of 
each coil is zQi. The coil angle (in electrical degrees) for the harmonic ν of the narrowest coil is νγ, 
the next being ν(γ + 2αu) and the broadest ν(γ + 2(q - 1)αu). For an arbitrary coil g, the current 
linkage is according to Eq. (2.43) 
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When all the harmonics of the same ordinal generated by all coils of one phase are summed, we 
obtain per pole  
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The sum kwν in brackets can be calculated for instance with the geometrical figure of Figs. 2.20 and 
2.12. The line segment AC  is written as 
 

 
2

sin2 uανqrAC = .        (2.47) 

 
The arithmetical sum of unit segments is 
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sin2 uναrqABq =         (2.48) 

 
and we may find for the harmonic ν 
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Figure 2.20. Concentric coils of a single pole; the calculation of winding factor for a harmonic ν. 
 
This equals to the distribution factor of Eq. (2.33). Now, we see that the line segment AC  = qkdν. 
We use Fig 2.12 a again: The angle BAC is obtained from Fig. 2.12 as a difference of the angles 
OAB and OAC. It is ν(q−1)αu/2. The projection AC'  is thus 
 

 ( )( )
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= .     (2.50) 
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Here we have a pitch factor influencing the harmonic ν, because in Fig. 2.20, ν[γ + (q − 1)αu] is the 
average coil width angle. Eq. (2.46) is now reduced  
 

 iqzk
Q

w
tot π

2
ν

Θ ν
ν = ,        (2.51) 

where 
 ννν dpw kkk = .         (2.52) 
 
This is the winding factor of the harmonic ν. This is an important observation. The winding factor 
was originally found for the calculation of the induced voltages. Now we understand that the same 
distribution and pitch factors also affect the current linkage harmonic production. By substituting the 
harmonic current linkage Θν  in Eq. (2.42) with the current linkage Θ νtot, we obtain the harmonic 
ν generated by the current linkage of q coils 
  
 ναΘΘ νν costot= .        (2.53) 
 
This is valid for a single phase coil. The harmonic ν created by a poly-phase winding is calculated 
by summing all the harmonics created by different phases. By its nature, the pitch factor is zero, if 
ναu = ±c2π (since ( ) ( ) 0πsin2/sin u =±= qcqαν ) (i.e., the coil sides are in the same magnetic 
potential), when the factor c = 0, 1, 2, 3, 4... It allows thereby only the harmonics 
 

 
u

π2
α

ν c≠ .         (2.54) 

 
The slot angle and the phase number are interrelated 
 

 
m

q π
u =α .         (2.55) 

 
The distribution factor is zero, if ν = ±c2m. The winding thus produces harmonics 
 
 cm21±+=ν .         (2.56) 
 
EXAMPLE 2.11: Calculate which ordinals of the harmonics can be created by a three-phase 
winding. 
 
SOLUTION: A symmetrical three-phase winding may create harmonics calculated based on Eq. 
(2.56), by inserting m = 3. These are listed in Table 2.2. 
 
Table 2.2. Ordinals of the harmonics created by a three-phase winding (m = 3).  

c 0 1 2 3 4   5  6 7...  

ν +1 +7 +13 +19 +25 +31  +37 +43... positive  
sequence 

 - −5 −11 −17 −23 −29 −35  −41... negative  
sequence 

 
We see that ν = −1, and all even harmonics and harmonics divisible by three are missing. In other 
words, a symmetrical poly-phase winding does not produce for instance a harmonic propagating to 
an opposite direction at the fundamental frequency. Instead, a single-phase winding m = 1 creates 
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also a harmonic, the ordinal of which is ν = −1. This is a particularly harmful harmonic, and 
impedes the operation of single-phase machines. For instance a single-phase induction motor, 
because of the field rotating to negative direction, does not start without assistance because the 
positive and negative sequence fields are equally strong. 
 
EXAMPLE 2.12: Calculate the pitch and distribution factors for ν = 1, 5, 7 if a chorded stator of an 
AC machine has 18 slots per pole and the first coil is embedded in the slots 1 and 16. Calculate also 
the relative harmonic current linkages. 
 
SOLUTION: The full pitch would be yQ = 18 and a full-pitch coil should be embedded in the slots 1 
and 19. If the coil is located in the slots 1 and 16, the coil pitch is shorted to y = 15. Therefore, the 
pitch factor for the fundamental will be: 
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The number of slots per pole and phase is q = 18/3 = 6 and the slot angle is αu = π/18. Now, the 
distribution factor is 
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923.0966.0956.0 1p1d1w =⋅== kkk , ( ) 051.0259.0197.0 5p5d5w =−⋅−== −−− kkk  
038.0259.0145.0 7p7d7w −=⋅−== kkk  

The winding creates current linkages iqzk
Q

w
tot π

2
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Θ ν
ν = . Calculating 

ν
νwk for the harmonics 1, −5, 7 
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Here we can see that because of the chorded winding, the current linkages of the fifth and seventh 
harmonics will be reduced to 1.1% and 0.58 % of the fundamental, as the fundamental is also 
reduced to 92.3 % of the full sum of the absolute values of slot voltages. 
 
EXAMPLE 2.13: A rotating magnetic flux created by a three-phase 50 Hz, 600 min-1 alternator has a 
spatial distribution of magnetic flux density given by the expression:  

ϑϑϑϑϑϑ 5sin18.03sin25.0sin9.05sinˆ3sinˆsinˆ
531 ++=++= BBBB   [T]. 

The alternator has 180 slots, the winding is wound with two layers, and each coil has three turns 
with the span of 15 slots. The armature diameter is 135 cm and the effective length of the iron core 
0.50 m. Write the expression for the instantaneous value of the induced voltage in one phase of the 
winding. Calculate the effective value of phase voltage and also the line-to-line voltage of the 
machine. 
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SOLUTION: The number of pole pairs is given by the speed and the frequency: 

5
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fpnpf , and the number of poles is 10. The area of one pole is:  
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From the expression for the instantaneous value of the magnetic flux density, we may 
derive 9.0ˆ

1 =B  T, 25.0ˆ
3 =B  T and 18.0ˆ

5 =B  T. The fundamental of the magnetic flux on the τp is 
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necessary to make a preliminary calculation of some parameters: 
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The number of slots per pole is 18
10
180

p ==Q , which would be a full pitch. The coil span is 15 slots, 

which means the chorded pitch y = 15, and the pitch factors are:  
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9234.0966.0955.0p1d1w1 =⋅=⋅= kkk , 4546.0)707.0(643.0w3 −=−⋅=k , 051.0259.0197.0w5 =⋅=k . 

Now, it is possible to calculate the effective values of the induced voltages of the harmonics. The 
phase number of turns is determined as follows: the total number of coils in a 180-slot machine in a 
two-layer winding is 180. It means that the number of coils per phase is 603/180 = , each coil has 
three turns, and therefore N = 60 × 3 = 180. 
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The induced voltage of harmonics can be written similarly as follows: 
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The ratio of the νth harmonic and fundamental is 
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Finally, the expression for the instantaneous value of the induced voltage is: 
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The total value of the effective phase voltage is:  

4524V5.499.6124482 2222
5

2
3

2
1ph =++=++= EEEE V, and its line-to-line voltage is 

58.7763V5.49448233 222
5

2
1 =+=+= EEE V. The third harmonic component does not 

appear in the line-to-line voltage, which will be demonstrated later on.  
 
EXAMPLE 2.14: Calculate the winding factors and per unit magnitudes of the current linkage for ν = 

1, 3, −5 if Q = 24, m = 3, q = 2, W/τp = 
Qy
y

= 5/6. 

SOLUTION: The winding factor is used to derive the per unit magnitude of the current linkage. In 
Fig. 2.21, we have a current linkage distribution of the phase U of a short-pitch winding (Q = 24, m 

= 3, q = 2, 2p = 4, W/τp = 
Qy
y = 5/6), as well as its fundamental and the third harmonic at time t = 0, 

when ii ˆ
U = . The total maximum height of the current linkage of a pole pair is at that moment iqz ˆ

Q . 
A half of the magnetic circuit (involving a single air gap) is influenced by a half of this current 
linkage. The winding factors for the fundamental and lowest harmonics and the amplitudes of the 
current linkages according to Eq. (2.51), (2.52) and Example 2.13 are: 
 
ν = 1 kw1= kp1kd1= 0.965 ⋅ 0.965 = 0,931 

1Θ̂ = 1.185 maxΘ  
ν = 3 kw3 = kp3kd3 = −0.707 ⋅ 0.707 = −0,5 $Θ 3= −0.212 maxΘ  
ν = −5 kw5 = kp−5kd−5 = −0.258 ⋅ 0.258 = −0.067 $Θ −5= −0.017 maxΘ  
The negative signs for the third and fifth harmonic amplitudes mean that, if starting at the same 
phase, the third and fifth harmonics will have a negative peak value as the fundamental is in its 
positive peak, see Fig. 2.21 and 2.22. 
 
For instance, the fundamental is calculated with (2.51); see also (2.15) 
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Only the fundamental and the third harmonic are illustrated in Fig. 2.21. 
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The amplitude of harmonics is often expressed as a percentage of the fundamental. In this case, the 
amplitude of the third harmonic is 17.8 % (0.212./1.185) of the amplitude of the fundamental. 
However, this is not necessarily harmful in a three-phase machine, because in the harmonic current 
linkage created by the windings together, the third harmonic is compensated. The situation is 
illustrated in Fig. 2.22, where the currents iU = 1 and iV = iW = −½ flow in the winding of Fig. 2.21. 
In salient pole machines, the third harmonic may, however, cause circulating currents in delta 
connection, and therefore the star connection in the armature is preferred.  
 
 

1 2 3 4 5 6 7 8 9 10 11 1224

+U -W +V -U +W -V +U

...

α

Θ(α)

0 π

Θmax
2Θmax

Θ̂
1

 
 
Figure 2.21. Short-pitch winding (Qs = 24, p = 2, m = 3, qs = 2) and the analysis of its current linkage distribution of the 
phase U. The distribution includes a notable amount of the third harmonic. In the figure, the fundamental and third 
harmonic are illustrated with dashed lines.  
 
In single- and two-phase machines, the number of slots is preferably selected higher than in three-
phase machines, because in these coils, at certain instants only a single phase coil alone creates the 
whole current linkage of the winding. In such a case, the winding alone should produce as sinusoidal 
current linkage as possible. In single- and double-phase windings, it is sometimes necessary to fit a 
different number of conductors in the slots to make the stepped line Θ(α) approach sinusoidal form. 
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Figure 2.22. Compensation of the third harmonic in a three-phase winding. There are currents iU = −2iV = −2iW flowing 
in the winding. We see that when we sum the third harmonics of the phases V and W with the harmonic of the phase U, 
the harmonics compensate each other.  
 
A poly-phase winding thus produces harmonics, the ordinals of which are calculated with Eq. (2.56). 
When the stator is fed at an angular frequency ωs, the angular speed of the harmonicν with respect to 
stator is 
 

 
ν
ωων

s
s = .         (2.57) 

 
The situation is illustrated in Fig. 2.23, which shows that the shape of the harmonic current linkage 
changes as the harmonic propagates in the air gap. The deformation of the harmonic indicates the 
fact that harmonic amplitudes propagate at different speeds and in different directions. A harmonic 
according to Eq. (2.57) induces the voltage of the fundamental frequency to the stator winding. The 
ordinal of the harmonic indicates how many wavelengths of a harmonic are fitted to a distance 2τp of 
a single pole pair of the fundamental. This yields the number of pole pairs and the pole pitch of a 
harmonic  
 
 pp νν = ,         (2.58) 

 
ν
τ

τ ν
p

p = .         (2.59) 

 
The amplitude of the νth harmonic is determined with the ordinal from the amplitude of the current 
linkage of the fundamental, and it is calculated in relation of the winding factors  
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Figure 2.23. Propagation of a harmonic current linkage and the deformations caused by harmonics. If there is a current 
flowing only in the stator winding, we are able to set the peak of the air gap flux density at β. The flux propagates but 
the magnetic axis of the winding U remains stable.  
 
The winding factor of the harmonic ν can be determined with Eqs. (2.32) and (2.33) by multiplying 
the pitch factor kpν and the distribution factor kdν. 
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Compared with the angular velocity ω1s of the fundamental component, a harmonic current linkage 
wave propagates in the air gap at a fractional angular velocity ω1s/ν. The synchronous speed of the 
harmonic ν is at the same very angular speed ω1s/ν. If a motor is running at about synchronous 
speed, the rotor is travelling much faster than the harmonic wave. If we have an asynchronously 
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running motor with a per-unit slip ( ) srs /ωΩω ps −= , (ωs is the stator angular frequency and Ωr is 
the rotor mechanical angular rotating frequency), the slip of the rotor with respect to the νth stator 
harmonic 
 
 ( )ss −−= 11 νν .        (2.62) 
 
 The angular frequency of theνth harmonic in the rotor is thus 
 
 ( )( )s−−= 11sr νωων .        (2.63) 
 
If we have a synchronous machine running with the slip s = 0, we immediately observe from Eq. 
(2.62) and (2.63) that the angular frequency created by the fundamental component of the flux 
density of the stator winding is zero in the rotor co-ordinate. However, harmonic current linkage 
waves pass the rotor at different speeds. If the shape of the pole shoe is such that the rotor produces 
flux density harmonics, they propagate at the speed of the rotor and thereby generate pulsating 
torques with the stator harmonics travelling at different speeds. This is a problem particularly in 
low-speed permanent magnet synchronous motors, in which the rotor magnetizing often produces a 
quadratic flux density and the number of slots in the stator is small, for instance q = 1 or even lower, 
the amplitudes of the stator harmonics being thus notably high.  
 
 

2.8 Poly-Phase Fractional Slot Windings 
 
If the number of slots per pole and phase q of a winding is a fraction, the winding is called a 
fractional slot winding. The windings of this type are either concentric or diamond windings with 
one or two layers. Some advantages of fractional slot windings when compared with integer slot 
windings are: 
 

• great freedom of choice with respect to the number of slots 
• opportunity to reach a suitable magnetic flux density with the given dimensions 
• multiple alternatives for short-pitching 
• if the number of slots is predetermined, the fractional slot winding can be applied to a wider  

range of numbers of poles than the integral slot winding 
• segment structures of large machines are better controlled by using fractional slot windings 
• opportunity to improve the voltage waveform of a generator by removing certain harmonics 

 
The greatest disadvantage of fractional slot windings is subharmonics, when the denominator of q 
(slots per pole and phase) is 2≠n  
 

 
n
z

pm
Qq ==

2
.         (2.64) 

 
Now, q is reduced so that the numerator and the denominator are smallest possible integers: the 
numerator being z and the denominator n. If the denominator n is an odd number, the winding is said 
to be a first-grade winding, and when n is an even number, the winding is of the second grade. The 
most reliable fractional slot winding is constructed by selecting n = 2. An especially interesting 
winding of this type can be designed for fractional slot permanent magnet machines by selecting q = 
½. 
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In integral slot windings, the base winding is of the length of two pole pitches (the distance of the 
fundamental wavelength), whereas in the case of fractional slot windings, a distance of several 
fundamental wavelengths has to be travelled before the phasor of a voltage phasor diagram meets 
the same exact point of the waveform again. The difference of an integral slot and fractional slot 
winding is illustrated in Fig. 2.24. 

 
B B

α0 π 2π α0 π 2π 2πp'

5... Qs

pQs,1... Qs,1... 5... Qs'+1

...
slot positions slot positions

=12

base winding base winding

B

α0

a)            b)

Qs = 12

1      2       3       4       5       6       7       8       9      10    11     12      1

slot positions and coil sides of phase U

base winding

1         2       3    4  5          1 p = 5

c)  
Figure 2.24. Basic differences of a) an integral slot stator winding and b) a fractional slot winding. The number of stator 
slots is Qs. In an integral slot winding, the length of the base winding is Qs/p slots (a: 12 slots, qs = 2), but in a fractional 
slot winding, the division is not equal (b: qs < 2). In the observed integer slot winding, the base winding length is Qs = 12 
and after that, the magnetic conditions for the slots repeat themselves equally; observe the slots 1 and 13. In the 
fractional slot winding, the base winding is notably longer and contains Qs' slots. Figure c illustrates an example of a 
fractional slot winding with Qs = 12 and p = 5. Such a winding may be used in concentrated wound permanent magnet 
fractional slot machines, where q = 0.4. In a two-layer system, each of the stator phases carries four coils. The coil sides 
are located in the slots 12–1, 1–2, 6–7, and 7–8. 
 
In a fractional slot winding, we have to proceed the distance of p' pole pairs before a coil side of the 
same phase meets exactly the peak value of the flux density again. Then, we need a number of Qs' 
phasors of the voltage phasor diagram, pointing at different directions. Now, we can write 
 

 
p

QpQ s
s ''= , Qs' < Qs ,        p > p'.      (2.65)  

 
Here the voltage phasors Qs' + 1, 2Qs' + 1, 3Qs' + 1 and (t-1)Qs' + 1 are in the same position in the 
voltage phasor diagram as the voltage phasor of the slot 1. In this position, the cycle of the voltage 
phasor diagram is always started again. Either a new periphery is drawn, or more slot numbers are 
added to the phasors of the initial diagram. In the numbering of a voltage phasor diagram, each layer 
of the diagram has to be circled p' times. Thus, t layers are created to the voltage phasor diagram. In 
other words, in each electrical machine, there are t electrically equal slot sequences, the slot number 
of which is Qs' = Qs/t and the number of pole pairs p' = p/t. To determine t, we have to find the 
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smallest integers Qs' and p'. t is thus the largest common divider of Qs and p. If Qs/(2pm) ∈ N (N is a 
set of integers, Neven is a set of even integers, and Nodd is a set of odd integers), we have an integral 
slot winding, and t = p, Qs' = Qs/p and p' = p/p = 1. Table 2.3 shows some parameters of a voltage 
phasor diagram. To generalize the representation, the subscript ’s’ is left out in the following. 
 
Table 2.3. Parameters of voltage phasor diagrams. 

t the largest common divider of Q and p, the number of phasors of a single radius, the 
number of layers of a voltage phasor diagram 

Q' = Q/t the number of radii, or the number of phasors of a single turn in a voltage phasor 
diagram. (the number of slots in a base winding) 

p' =p/t the number of revolutions around a single layer when numbering a voltage phasor 
diagram 

(p/t) – 1 the phasors skipped in the numbering of the voltage phasor diagram 

 
If the number of radii in the voltage phasor diagram is Q' = Q/t, the angle of adjacent radii, that is, 
the phasor angle αz is written 
 

 t
Q
π2

z =α .         (2.66) 

 
The slot angle αu is correspondingly a multiple of the phasor angle αz  
 

 zzu 'ααα p
t
p

== .        (2.67) 

 
When p = t, we obtain αu = αz, and the numbering of the voltage phasor diagram proceeds 
continuously. If p > t, αu > αz, a number of (p/t) – 1 phasors have to be skipped in the numbering of 
slots. In that case, a single layer of a voltage phasor diagram has to be circled (p/t) times when 
numbering the slots. When considering the voltage phasor diagrams of harmonics ν, we see that the 
slot angle of the ν th harmonic is ναu. Also the phasor angle is ναz. The voltage phasor diagram of 
theν th harmonic differs from the voltage phasor diagram of the fundamental with respect to the 
angles, which are ν-fold. 
 
EXAMPLE 2.15: Create voltage phasor diagrams for two different fractional slot windings: a) Q = 
27 and p = 3, b) Q = 30, p = 4. 
 
SOLUTION: a) Q = 27, p = 3, Q/p = 9 ∈ N, qs = 1.5, t = p = 3, Q' = 9, p' = 1, α u = α z = 40°. 
 
There are, hence, nine radii in the voltage phasor diagram, each having three phasors. Because αu = 
αz, no phasors are skipped in the numbering, Fig. 2.25a. 
 
b) Q = 30, p = 4, Q/p = 7.5 ∉ N, qs = 1.25, t = 2 ≠ p, Q' = 15, p' = 2, Z = Q/t = 30/2 =15, αz = 
360°/15 = 24°, α u = 2α z = 2×24° = 48°, (p/t) - 1 = 1. 
 
In this case, there are 15 radii in the voltage phasor diagram, each having two phasors. Because αu = 
2αz, the number of phasors skipped will be [(p/t) - 1 = 1]. Both of the layers of the voltage phasor 
diagram have to be circled twice in order to number all the phasors, Fig. 2.25b. 
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Figure 2.25. Voltage phasor diagrams for two different fractional slot windings. Left, the numbering is continuous, 
whereas on the right, certain phasors are skipped. a) Q = 27, p = 3, t = 3, Q' = 9, p' = 1 α u = α z = 40°; b) Q = 30, p = 4, t 
= 2, Q' = 15, p' = 2 αu = 2αz = 48°; αu is the angle between voltages in the slots in electrical degrees and the angle αz is 
the angle between two adjacent phasors in electrical degrees.  
 
 

2.9 Phase Systems and Zones of Windings  
 
 
Phase systems 
Generally speaking, windings may involve single or multiple phases, the most common case being a 
three-phase winding, which has been discussed here also. However, various other winding 
constructions are possible, as illustrated in Table 2.4. 
 
On a single magnetic axis of an electrical machine, there may be located only one axis of a single 
phase winding. If another phase winding is placed on the same axis, no genuine poly-phase system 
is created, because both windings produce parallel fluxes. Therefore, each phase system that 
involves an even number of phases is reduced to involve only a half of the original number of phases 
m' as illustrated in Table 2.4. If the reduction produces a system with an odd number of phases, we 
obtain a radially symmetric poly-phase system, also known as a normal system. 
 
If the reduction produces a system with an even number of phases, the result is called a reduced 
system. In this sense, an ordinary two-phase system is a reduced four-phase system, as illustrated in 
Table 2.4. For an m-phase normal system, the phase angle is  
 

αph = 2π/m.         (2.68)  
 
Correspondingly for a reduced system, the phase angle is  
 

αph = π/m.          (2.69) 
 

For example in a three-phase system, αph3 = 2π/3 and for a two-phase system, αph2 = π/2. 
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If there is even a single odd number as a multiplicand of the phase number in the reduced system, a 
radial-symmetric winding can be constructed again by turning the direction of the suitable phasors 
by 180 electrical degrees in the system, as shown in Table 2.4 for a six-phase system (6 = 2×3). 
With this kind of a system, a non-loaded star point is created exactly like in a normal system. In a 
normal reduced system, the star point is loaded, and thus for instance a star point of a reduced two-
phase machine requires a conductor of its own, which is not required in a normal system. Without a 
neutral conductor, a reduced two-phase system becomes a single-phase system, because the 
windings cannot operate independently, but the same current that produces the current linkage is 
always flowing in them, and together they form only a single magnetic axis. An ordinary three-
phase system also becomes a single-phase system for instance if the voltage supply of one phase 
ceases for some reason.   
 
Table 2.4. Phase systems of the windings of electrical machines. The fourth column introduces radially symmetric 
winding alternatives. 

Number of  phases m Non-reduced winding 
systems have separate 
windings for positive 

and negative magnetic 
axes 

Reduced system: 
loaded star point 

needs a neutral line 
unless radial-symmetric 

(e.g. m = 6)  

Normal system:  
non-loaded star point 

and 
no neutral line, unless  

m = 1 
1 

m' = 2 

- 

        

2 

m' = 4 

 

- 

3 

m' = 6 

- 

 

4 

m' = 8 
 

- 

5 

m' = 10 

- 

 

6 
 
 
 
 
 

… 

m' = 12 

- 

12 

 m' = 24  

- 
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Reading instructions for 
Table 2.4 L1

L2

L1

L2 L3N
loaded star point non-loaded star point  

 
Of the winding systems in Table 2.4, the three-phase normal system is dominant in industrial 
applications. Five- and seven-phase windings have been suggested for frequency converter use to 
increase the system output power at a low voltage. Six-phase motors are used in large synchronous 
motor drives. In some larger high-speed applications, six-phase windings are also useful. In practice, 
all phase systems divisible by three are practical in inverter supplies. Each of the three-phase partial 
systems is supplied by its own three-phase frequency converter having a temporal phase shift 2π/m', 
in a 12-phase system e.g. π/12. For example a 12-phase system is supplied with four three-phase 
converters having a π/12 temporal phase shift. 
 
Single-phase windings may be used in single-phase synchronous generators and also in small 
induction motors. In the case of a single-phase-supplied induction motor, the motor, however, needs 
starting assistance, which is often realized as an auxiliary winding with a phase shift of π/2. In such 
a case, the winding arrangement starts to resemble the two-phase reduced winding system, but since 
the windings are usually not similar, the machine is not purely a two-phase machine 
 
Zones of Windings 
In double-layer windings, both layers have separate zones; an upper-layer zone and a bottom-layer 
zone, Fig. 2.26. This double number of zones means also a double number of coil groups when 
compared with single-layer windings. In double-layer windings, one coil side is always located in 
the upper layer, and the other in the bottom layer. In short-pitched double-layer windings, the upper 
layer is shifted with respect to the bottom layer, as it is shown in Figs. 2.15 and 2.17. The span of the 
zones can be varied between the upper and bottom layer, as shown in Fig. 2.17 (zone variation). 
With double-layer windings, we can easily apply systems with a double zone span, which usually 
occur only in machines, where the windings may be rearranged during the drive to produce another 
number of poles. In fractional slot windings, zones of varying spans are possible. This kind of zone 
variation is called natural zone variation. 
 
In a single-layer winding, each coil requires two slots. For each slot, there is now one half of a coil. 
In double-layer windings, there are two coil sides in each slot, and thus, in principle, there is one coil 
per slot. A total number of coils zc is thereby 
 

 for single-layer windings: 
2c
Qz = .      (2.70) 

 for double-layer windings: Qz =c .      (2.71) 
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Figure 2.26. Zone formation of double-layer windings, m  = 3, p = 1. a) a normal zone span b) a double zone span, c) the 
zone distribution of a six-phase radial-symmetric winding with a double zone span. The tails and heads of the arrows 
correspond to a situation in which there are currents IU = -2IV = - 2IW flowing in the windings. The winding in Fig. 2.26a 
corresponds to a single-layer winding, which is obtained by unifying the winding layers by removing the insulation layer 
between the layers. 
 
The single-layer windings and double-layer windings with double-width zones form m coil groups 
per pole pair. Double-layer windings with a normal zone span form 2m coil groups per pole pair. 
The total numbers of coil groups are thus pm and 2pm respectively. Table 2.5 lists some of the core 
parameters of phase windings. 
 
Table 2.5. Phase winding parameters 

 
 

 

2.10 Symmetry Conditions 
 
A winding is said to be symmetrical, if it, when fed from a symmetrical supply, creates a rotating 
magnetic field. Both of the following symmetry conditions must be fulfilled. 
 
a) The first condition of symmetry: Normally, the number of coils per phase winding has to be an 
integer: 

 For single-layer windings: N  
2

∈= pq
m

Q .     (2.72) 

 For double-layer windings:   2 N∈= pq
m
Q .     (2.73) 

 
The first condition is met easier by double-layer windings than by single-layer windings, thanks to a 
wider range of alternative constructions. 
 
b) The second condition of symmetry: In poly-phase machines, the angle αph between the phase 
windings has to be an integral multiple of the angle αz. Therefore for normal systems, we can write 
 

Winding Number of coils 
zc 

Number of 
groups of coil 

Average zone 
span 

Average zone angle 
αzav 

Single-layer Q/2 pm τp/m π/m 
Double-layer, 
normal zone span 

Q 2pm τp/m π/m 

Double-layer, 
double zone span 

Q pm 2τp/m 2π/m 
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π2

π2

z

ph N∈==
mt
Q

tm
Q

α
α

,       (2.74) 

 
and for reduced systems 
 

   
2π2

π

z

ph N∈==
mt
Q

tm
Q

α
α

.       (2.75) 

 
Let us now consider how the symmetry conditions are met with integral slot windings. The first 
condition is always met, since p and q are integers. The number of slots in integral slot windings is 
Q = 2pqm. Now the largest common divider t of Q and p is always p. When we substitute p = t to 
the second symmetry condition, we can see that it is always met, since 
 

   2 N∈== q
mp
Q

mt
Q .        (2.76) 

 
Integral slot windings are thus symmetrical. Because t = p, also αu = αz, and hence the numbering of 
the voltage phasor diagram of the integral slot winding is always consecutive, as can be seen for 
instance in Figures 2.10 and 2.18. 
 
 
Symmetrical Fractional Slot Windings 
Fractional slot windings are not necessarily symmetrical. A successful fulfilment of symmetry 
requirements starts with the correct selection of the initial parameters of the winding. First, we have 
to select q (slots per pole and phase) so that the fraction presenting the number of slots 
 

 
n
zq =           (2.77) 

 
is indivisible. Here the denominator n is a quantity typical of fractional slot windings. 
 
a) The first condition of symmetry: For single-layer windings (Eq. 2.72), it is required that in the 
equation 
 

 
n
zppq

m
Q

==
2

,  N  ∈
n
p .      (2.78) 

 
Here z and n constitute an indivisible fraction, and thus p and n have to be evenly divisible. We see 
that when designing a winding, with the pole pair number p usually as an initial condition, we can 
select only certain integer values for n. Correspondingly, for double-layer windings (Eq. 2.73), the 
first condition of symmetry requires that in the equation 
 

 
n
zppq

m
Q 22 == ,  N  2

∈
n
p .      (2.79) 

 
When comparing Eq. (2.78) with Eq. (2.79), we can see that we achieve a wider range of alternative 
solutions for fractional slot windings by applying a double-layer winding than a single-layer 
winding. For instance for a two-pole machine p = 1, a single-layer winding can be constructed only 
when n = 1, which leads to an integral slot winding. On the other hand, a fractional slot winding, for 
which n = 2 and p = 1, can be constructed as a double-layer winding. 
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b) The second condition of symmetry: To meet the second condition of symmetry (Eq. 2.74), the 
largest common divider t of Q and n has to be defined. This divider can be determined from the 
following equation: 
 

 
n
pnp

n
pmzpqmQ ===  and 22 .  

 
According to Eq. (2.78), p/n ∈ N, and thus this ratio is a divider of both Q and p. Because z is 
indivisible by n, the other dividers of Q and p can be included only in the figures 2m and n. These 
dividers are denoted generally with c, and thus 
 

 
n
pct = .         (2.80)  

 
Now the second condition of symmetry can be rewritten for normal poly-phase windings in a form 
that is in harmony with Eq. (2.74) 
 

   22
N∈==

c
z

n
pmc

n
pmz

mt
Q .       (2.81) 

 
The divider c of n cannot be a divider of z. The only possible values for c are c = 1 or c = 2.  
 
For normal poly-phase systems, m is an odd integer. For reduced poly-phase systems, according to 
Eq. (2.75), it is written 
 

   
2

2

2
N∈==

c
z

n
pmc

n
pmz

mt
Q .       (2.82) 

 
For c, this allows only the value c = 1. 
 
As shown in Table 2.4, for normal poly-phase windings, the phase number m has to be an odd 
integer. The divider c = 2 of 2m and n cannot be a divider of m. For reduced poly-phase systems, m 
is an even integer, and thus the only possibility is c = 1. The second condition of symmetry can now 
be written simply in the form: n and m cannot have a common divider N∉mn / . If m = 3, n cannot 
be divisible by three, and the second condition of symmetry reads: 
 

 N∉
3
n .          (2.83) 

 
The conditions (2.78) and (2.83) automatically determine that if p includes only the figure three as 
its factor (p = 3, 9, 27, ...), a single-layer fractional slot winding cannot be constructed at all. 
 
Table 2.6 lists the symmetry conditions of fractional slot windings. 
 
Table 2.6. Conditions of symmetry for fractional slot windings. 
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Number of slots per pole and phase q = z/n, where z and n cannot be mutually divisible 
 

Type of winding, 
number of phases 

Condition of symmetry 

Single-layer windings p/n  ∈  N 
Double-layer windings 2p/n  ∈  N 
Two-phase m = 2 n/m  ∉  N → n/2  ∉  N 
Three-phase m = 3 n/m  ∉  N → n/3  ∉  N 

 
 
As shown, it is not always possible to construct a symmetrical fractional slot winding for certain 
numbers of pole pairs. However, if some of the slots are left without a winding, a fractional slot 
winding can be carried out. In practice, only three phase windings are realized with empty slots. 

Free slots Qo have to be distributed on the periphery of the machine so that the phase windings 
become symmetrical. The number of free slots has thus to be divisible by three, and the angle 
between the corresponding free slots has to be 120°. The first condition of symmetry is now written 
as: 
 

 N∈
−
6

oQQ .         (2.84) 

 
The second condition of symmetry is 
 

 N∈
t

Q
3

.          (2.85) 

 
Furthermore, it is also required that  
 

 odd
o

3
N∈

Q .         (2.86) 

 
Usually, the number of free slots is selected to be three, because this enables the construction of a 
winding, but does not leave a considerable amount of the volume of the machine without utilization. 
For normal zone-width windings with free slots, the average number of slots of a coil group is 
obtained from the equation  
 

 
pm

Qq
pm

Q
pm
Q

pm
QQQ

2222
ooo

av −=−=
−

= .     (2.87) 

 

2.11 Base Windings 
 
It was shown previously that in fractional slot windings, a certain coil side of a phase winding 
occurs at the same position with the air gap flux always after p' = p/t pole pairs, if the largest 
common divider t of Q and p is larger than one. In that case, there are t electrically equal slot 
sequences containing Q' slots in the armature, each of which includes a single layer of the voltage 
phasor diagram. Now it is worth considering whether it is possible to connect a system of t equal 
sequences of slots containing a winding as t equal independent winding sections. This is possible 
when all the slots Q' of the slot sequence of all t electrically equal slot groups meet the first 
condition of symmetry. The second condition of symmetry does not have to be shown. 
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If Q'/m is an even number, both a single-layer and a double-layer winding can be constructed in Q' 
slots. If Q'/m is an odd number, only a double-layer winding is possible in Q' slots. When 
constructing a single-layer winding, q has to be an integer. Thus, two slot pitches of t with 2Q' slots 
altogether are required for a smallest independent symmetrical single-layer winding. The smallest 
independent symmetrical section of a winding is called a base winding. When a winding consists of 
several base windings, the current and voltage of which are due to geometrical reasons always of the 
same phase and magnitude, it is possible to connect these basic windings in series and in parallel to 
form a complete winding. Depending on the number of Q'/m, that is, whether it is an even or odd 
number, the windings are defined either as first- or second-grade windings. 
 
Table 2.7 lists some of the parameters of base windings. 
 
Table 2.7. Some parameters of fractional slot base windings. 
 Base winding of 

first grade 
Base winding of second grade 

Parameter q q = z/n 

Denominator n 
oddN∈n  evenN∈n  

Parameter mQ /'  
even

'
N∈m

Q
 odd

'
N∈m

Q
 

Parameter tmQ /  
evenN∈tm

Q
 oddN∈tm

Q
 

Divider t, the largest 
common divider of Q and p n

p
t =  n

p
t

2
=  

Slot angle αu expressed with 
voltage phasor angle αz  t

Q
nn π2

zu == αα  t
Q

nn π
2 zu == αα  

Type of winding single-layer windings 
double-layer windings 

single-layer windings double-layer windings 

Number of slots Q* of a base 
winding t

Q
Q =*  t

Q
Q 2* =  t

Q
Q =*  

Number of pole pairs p* of a 
base winding p* = nt

p
=  p* = nt

p
=2  p* = 2

n
t
p

=  

Number of layers t* in a 
voltage phasor diagram for a 
base winding  

 
t* =1 

 
t* =2 

 
t* =1 

The asterix * indicates the values of the base winding.  
 
 

2.11.1 First-Grade Fractional Slot Base Windings 
 
In first-grade base windings,  
 

 even
' N∈=

mt
Q

m
Q .        (2.88) 

 
There are Q* slots in a first-grade base winding, and the following is valid for the parameters of the 
winding: 
 

 1*,*,* ==== tn
t
pp

t
QQ .       (2.89) 
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The both conditions of symmetry (2.72)–(2.75) are met under these conditions. 
 
 

2.11.2 Second-Grade Fractional Slot Base Windings 
 
A precondition of the second-grade base windings is that  
 

 odd
' N∈=

mt
Q

m
Q .         (2.90) 

 
According to Eqs. (2.81) and (2.82), Eq. (2.90) is valid for normal poly-phase windings, when c = 2 
only for the even values of n. Thus we obtain t = 2p/n and αu = nαz/2. The first condition of 
symmetry is met with the base windings of the second grade only when Q* = 2Q'. Only now we 
obtain 
 

 N∈==
mt
Q

m
Q

m
Q '
2

* .        (2.91) 

 
The second-grade single-layer base winding comprises thus two consequent tth parts of a total 
winding. Their parameters are written as 
 

 2* ,2*,2* ==== tn
t
pp

t
QQ .      (2.92) 

 
With these values, also the second condition of symmetry is met, since 
 

 N∈==
mt
Q

m
Q

mt
Q

2
'2

*
* .        (2.93) 

 
The second-grade double-layer base winding meets the first condition of symmetry immediately 
when the number of slots is Q* = Q'. Hence 
 

 N∈==
mt
Q

m
Q

m
Q '* .        (2.94) 

 
The parameters are now 
 

 1*,
2

*,* ==== tn
t
pp

t
QQ .       (2.95) 

 
The second condition of symmetry is now also met. 
 
 

2.11.3 Integral Slot Base Windings 
 
For integral slot windings, t = p. Hence, we obtain for normal poly-phase systems 
 

 even2 N∈== q
mp
Q

mt
Q .        (2.96) 
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For a base winding of the first grade, we may write 
 

 .1*,1*,* ==== t
p
pp

p
QQ        (2.97) 

 
Since also the integral slot windings of reduced poly-phase systems form base windings of the first 
grade, we can see that all integral slot windings are of the first grade, and that integral slot base 
windings comprise only a single pole pair. The design of integral slot windings is therefore fairly 
easy. As we can see in Fig. 2.17, the winding construction is repeated without changes always after 
one pole pair. Thus, to create a complete integral slot winding, we connect a sufficient number of 
base windings with a single pole pair either in series or in parallel.  
 
 
EXAMPLE 2.16: Create a voltage phasor diagram of a single-layer integral slot winding, for which 
Q = 36, p = 2, m = 3. 
 
SOLUTION: The number of slots per pole and phase is 
 

 3
2

==
pm
Qq . 

 
A zone distribution, Fig. 2.27, and a voltage phasor diagram, Fig. 2.28 are constructed for the 
winding.     

 
 

1  2   3  4  5  6  7  8  9  10        13        16        19        22        25        28        31        34    36

U V W U

τp

-U +W -V +U -W +V -U +W -V +U
V W

-W +V

 
 
Figure 2.27. Zone distribution for a single-layer winding. Q = 36, p = 2, m = 3, q = 3.  
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Figure 2.28. Complete voltage phasor diagram for a single-layer winding. p = 2, m = 3, Q = 36, q = 3, t = 2, Q' = 18, αz 
= αu = 20°. The second layer of the voltage phasor diagram repeats the first layer and it may, hence, be omitted. The 
base winding length is 18 slots. 
 
A double-layer integral slot winding is now easily constructed by selecting different phasors of the 
voltage phasor diagram of Fig. 2.28 for instance for the upper layer. This way, we can immediately 
calculate the influence of different short-pitchings. The voltage phasor diagram of Fig. 2.28 is 
applicable to the definition of the winding factors of the short-pitched coils of Fig. 2.15. Only the 
zones labelled in the figure will change place. Figure 2.28 is directly applicable to a full-pitch 
winding of Fig. 2.14. 
 
 

2.12 Fractional Slot Windings 
 
2.12.1 Single-Layer Fractional Slot Windings 
 
Fractional slot windings with extremely small fractions are popular in brushless DC machines and 
permanent magnet synchronous machines (PMSM). Machines operating with sinusoidal voltages 
and currents are regarded as synchronous machines even though their air gap flux density might be 
rectangular. Figure 2.29 depicts the differences between single-layer and double-layer windings in a 
case where the permanent magnet rotor has four poles and q = ½. 
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Figure 2.29. Comparison of a single-layer and a double-layer fractional slot winding with concentrated coils. Qs = 6, m 
= 3, p = 2, q = ½. 
 
When the number of slots per pole and phase q of a fractional slot machine is larger than one, the 
coil groups of the winding have to be of the desired slot number q in average. In principle, the zone 
distribution of the single-layer fractional slot windings is carried out either based on the voltage 
phasor diagram or the zone diagram. The use of a voltage phasor diagram has often proved to lead to 
an uneconomical distribution of coil groups, and therefore it is usually advisable to apply a zone 
diagram in the zone distribution. The average slot number per pole and per phase of a fractional slot 
winding is hence q, which is a fraction that gives the average number of slots per pole and phase qav. 
This kind of an average number of slots can naturally be realized only by varying the number of 
slots in different zones. The number of slots in a single zone is denoted by qk. Now 
 
 N∉=≠ qqq avk .        (2.98) 
 
 qav has thus to be an average of the different values of qk. Now we write 
 

 
n
zgq '

+= ,         (2.99) 

 
where g is an integer, and the quotient is indivisible so that z' < n. Now we have an average number 
of slots per pole and phase q = qav, when the width of z zones in n coil groups is set g + 1 and the 
width of n – z zones is g. 
 

 ( ) ( ) q
n
zg

n
gzngzq

n
q

n

k
=+=

−++
== ∑

=

''1'1
1

kav .    (2.100) 

 
The divergences from a totally symmetrical winding are at smallest when the same number of slots 
per pole and phase occurs in consequent coil groups as seldom as possible. The best fractional slot 
winding is found with n = 2, when the number of slots per pole and phase varies constantly when 
travelling from one zone to another. To fulfil Eq. (2.100), at least n groups of coil are required. Now 
we obtain the required number of coils 
 

 
2
**av

Qmqpnmq == .       (2.101) 

 
This number corresponds to the size of a single-layer base winding. Now we have shown again that 
a base winding is the smallest independent winding for single-layer windings. When the second 
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condition of symmetry for fractional slot windings is considered, it makes no difference how the 
windings are distributed in the slots (n zones, qk coil sides in each), if only the desired average qav is 
reached (e.g. 1 + 2 + 1 + 1 + 2 gives an average of 1 2/5). The nm coil groups of a base winding have 
to be distributed to m phase windings so that each phase gets n single values of qk (a local number of 
slots), in the same order in each phase. The coil numbers of consequent coil groups run through the 
single values of qk n times in m equal cycles. This way, a cycle of coil groups is generated.  
 
The first column of Table 2.8 shows m consequently numbered cycles of coil groups. The second 
column consists of nm coil groups in running order. The third column lists n single values of qk m 
times in running order. Because the consequent coil groups belong to consequent phases, we get a 
corresponding running phase cycle in the fourth column. During a single cycle, the adjacent, fifth 
column goes through all the phases U, V, W, … m of the machine. The sixth column repeats the 
numbers of coil groups. 
 
Table 2.8. Order of coil groups for symmetrical single-layer fractional slot windings. 

Cycle of coil 
groups  
1…m 

Number of coil 
group. This 

column runs m 
times from 1 to 
n (the divider of 

the fraction 
q = z/n) 

Local number of 
slots per pole 

and phase 
(equals local 

number of slots 
per pole and phase 

qk) 

Phase cycle, 
All the phases 
are introduced 

once 

Phases  
from 1 to m 

 
(for a three-

phase system we 
have U, V, W) 

Number of coil 
group 

1 1 Q1 1 U 1 

1 2 Q2 1 V 2 

1 3 Q3 1 W 3 

1 | | 1 | | 

1 K qk 1 m m 

1 | | 2 U m+1 

1 | | 2 V m+2 
1 | | 2 W m+3 
1 N qn 2 | | 

2 n+1 Q1 2 | | 

2 n+2 | 2 | | 

2 | |  | | 
2 n+k qk  | | 

 | |  | | 
 Dn qn  | | 

d+1 dn+1 Q1 c | | 

 | | c | | 
 | | C m Cm 

 dn+k qk c+1 U cm+1 

 | |  V | 
 | |  W | 

m (m-1)n+k qk  | | 

m | |  | | 
m | |  | | 
m | |  | | 
m | |  | | 
m mn qn N m Nm 

 
EXAMPLE 2.17: Compare two single-layer windings, an integral slot winding and a fractional slot 
winding, having the same number of poles. The parameters for the integral slot winding are: Q = 36, 
p = 2, m = 3, q = 3 and for the single-layer fractional slot winding Q = 30, p = 2, m = 3, q = 2½.  
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SOLUTION: For the fractional slot winding, ( ) ( ) q
n
zg

n
gzngzq

n
q

n

k
=+=

−++
== ∑

=

''1'1
1

kav . We 

see that in this case g = 2, z' = 1, n = 2. Now, a group of coils with z' = 1 is obtained, in which there 
are q1 = g + 1 = 3 coils, and another n − z' = 1 group of coils with q2 = g = 2 coils. As p = p* = n = 2, 
we have here a base winding with three (m = 3) cycles of coil groups of both the coil numbers q1 and 
q2. They occur in n = 2 cycles of three phases. In Table 2.9, example of Table 2.8 is applied to Fig. 
2.30. For the fractional slot winding q = z/n = 5/2. 
 
 
Table 2.9. Example of Table 2.8 applied to Fig. 2.30. For the fractional slot winding q = z/n = 5/2. 

Cycle of coil 
groups 

Number of coil 
group  

Number of coils
(qk) 

Phase cycle Phase Number of coil 
group 

1 1 3 = q1 1 U 1 

1 2 (= n) 2 = q2 1 V 2 

2 2+1 = 3 3 1 W 3 

2 2+2 = 4 2 2 U 4 
3 (= m) (2+2)+1 = 5 3 2 V 5 

3 (= m) (2+2)+2 = 6 = 
nm = 2⋅3 

2 2 W 6 = nm 

 
The above table can be presented simply as: 
 

qk 3 2 3 2 3 2 
phase U V W U V  W 

 
Each phase is comprised of a single coil group with two coils, and one coil group with three coils. 
Figure 2.30 compares the above integral slot winding and a fractional slot winding. 
 
Fractional slot windings create more harmonics than integral slot windings. By dividing the ordinal 
number ν  of the harmonics of a fractional slot winding by the number of pole pairs p*, we obtain 
 

 
*

'
p
νν = .         (2.102) 

 
In integral slot windings, such relative ordinal numbers of the harmonics are the following odd 
integers: ='ν 1, 3, 5, 7, 9, ... For fractional slot windings, when ν = 1, 2, 3, 4, 5, ... the relative 
ordinal number gets the values 'ν = 1/p*, 'ν = 2/p*, 'ν = 3/p*, ... in other words, values for which 

'ν < 1; 'ν ∉ N and 'ν ∈ Neven. The lowest harmonic created by an integral slot winding is the 
fundamental ( 'ν = 1), but a fractional slot winding can produce also subharmonics ( 'ν < 1). There 
occur also harmonics, the ordinal number of which is a fraction or an even integer. These harmonics 
cause additional forces, unintended torques and losses. These additional harmonics are the stronger, 
the greater is the zone variation, in other words, the divergence of the current linkage distribution 
from the respective distribution of an integral slot winding. In poly-phase windings, not all the 
integer harmonics are present. For instance, of the spectrum of three-phase windings, those 
harmonics are absent, the ordinal number of which is divisible by three, because αstr,ν = αstr,1 = 
ν 360°/m = ν 120°, and thus, because of the displacement angle of the phase windings αstr = 120°, 
they do not create a voltage between different phases.  
 



J. Pyrhönen, T. Jokinen, V. Hrabovcová 2.59   

-U +W -V +U -W +V -U +W -V +U -W +V

subharmonic

p2τ p3τ p4τpτ0

Θ

 
Figure 2.30. Zone diagrams and current linkage distributions of two different windings (q = 3, q = 2½). The integral slot 
winding is fully symmetrical, but the current linkage distribution of the fractional slot winding (dotted line) differs 
somewhat from the distribution of the integral slot winding (continuous line). The current linkage clearly contains a sub-
harmonic, which has a double pole pitch compared with the fundamental. 
 
EXAMPLE 2.18: Design a single-layer fractional slot winding of the first grade, for which Q = 168, 
p = 20, m = 3. What is the winding factor of the fundamental? 
 
SOLUTION: The number of slots per pole and phase is  
 

 
5
21

3202
168

=
⋅⋅

=q , 

 
We have a fractional slot winding with n = 5 as a divider. The conditions of symmetry (Table 2.6) 
p/n = 20/5 = 4 ∈ N and n/3 = 5/3 ∉ N are met. According to Table 2.7, when n is an odd number n = 
5 ∈ Nodd, a first-grade fractional slot winding is created. When t = p/n = 4, its parameters are 
 
 Q* = Q/t = 168/4 = 42, p* = n = 5; t* = 1. 
 

The diagram of coil groups, according to Eq. (2.101), 
2
**av

Qmqpnmq ==  consists of p*m = nm = 

5 ⋅ 3 = 15 groups of coils. The coil groups and the phase order are selected according to Table 2.8  
 
 

qk 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 
phase  U V W U V W U V W U V W U V W 

 
m = 3 cycles of coil groups with n = 5 consequent numbers of coils qk, yield a symmetrical 
distribution of coil groups for single phase coils 
 

qk q1 q2 q3 q4 q5 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5 
phase U 2   1   1   1   2   
phase V  1   1   2   2   1  
phase W   2   2   1   1   1 

 
In each phase, there is one group of coils qn. The average number of slots per pole and phase qav of 
the coil group is written according to Eq. (2.100) using the local qk value order of phase U 
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We now obtain a coil group diagram according to Fig. 2.31 and a winding phasor diagram according 
to Fig. 2.32.  
 

U V W U V W U V W U V W U

2 1 2 1 1 2 1 2 1 1 2 1 2qk

phase
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Figure 2.31. Coil group diagram of single-layer fractional slot winding. Q* = Q/t = 168/4 = 42, p* = n = 5; t* = 1. 

 
When calculating the winding factor for the winding, the following parameters are obtained for the 
voltage phasor diagram: 
 
 Number of layers in the voltage phasor diagram t* = 1 
 Number of radii     Q' = Q*/t* = 42 
 Slot angle      αu = 360°p*/Q* = 360°⋅5/42 = 426/7° 
 Phasor angle      αz = 360°t*/Q* = 360°⋅1/42 = 84/7° 
 Number of phasors skipped in the numbering (p*/t*) − 1 = 5 − 1 = 4. 
 Number of phasors for one phase    Z = Q´/m = 42/3 = 14 
 
The voltage phasor diagram is illustrated in Fig. 2.32. 
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Figure 2.32 a) Voltage phasor diagram of a first-grade single-layer base winding. p* = 5, m = 3 Q' = Q* = 42, q = 12/5, 
t* = 1, αu = 5αz = 426/7°, αz = 84/7° The phasors of the phase U are illustrated with a continuous line, b) the phasors of 
phase U turned to form a bunch of phasors for the winding factor calculation and the symmetry line.  
 

The winding factor may now be calculated using Eq. (2.16) ∑
=

=
Z

ρ
ρZ

k
1

wν cos2
πsin

α

ν

 

The number of phasors Z = 14 for one phase and the angle between the phasors in the bunch is αz = 
84/7°. The fundamental winding factor is found after having determined the angles αρ between the 
phasors and the symmetry line, hence 
 

( ) ( ) ( ) ( )( )
945.0

14

217
48cos27

482cos27
483cos7

484cos
w1 =

⋅+°+°⋅+°⋅+°⋅
=k  

 
As a result of the winding design based on the zone distribution given above, we have a winding in 
which, according to the voltage phasor diagram, certain coil sides are transferred to the zone of the 
neighbour phase. By exchanging the phasors 19–36, 5–22, and 8–33 we would also receive a 
functioning winding but there would be less similar coils than in the winding construction presented 
above. This kind of a winding would lead to a technically inferior solution, in which undivided and 
divided coil groups would occur side by side. Such winding solutions are favourable, in which the 
variation of coil arrangements is kept to a minimum. This way, the best shape of the end winding is 
achieved. 
 
EXAMPLE 2.19: Is it possible to design a winding with a) Q = 72, p = 5, m = 3, b) Q = 36, p = 7, m 
= 3, c) Q = 42, p = 3, m = 3? 
 
SOLUTION: a) Using Table 2.6, we check the conditions of symmetry for fractional slot windings. 
The number of slots per pole and phase is q = z/n = 72/(2⋅5⋅3) =22/5. z = 12 and n = 5, which are not 
mutually divisible. As p/n = 5/5 = 1 ∈ N a single-layer winding should be made and as n/m = 5/3 ∉ 
N the symmetry conditions are OK. And as n ∈ Nodd we will consider a first-grade base winding as 
follows: 
 Q* = 72, p* = 5,  m = 3,   q = 22/5. 
 

qk 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 
phase U V W U V W U V W U V W U V W 

 
 ( ) qq ==++++= 5

2
5
1

av 232223 . This is a feasible winding. 
 
SOLUTION: b) The number of slots per pole and phase is q = z/n = 36/(2⋅7⋅3) = 6/7. z = 6 and n = 7, 
which are not mutually divisible. As p/n = 7/7 = 1 ∈ N a single layer winding can be made, and as 
n/m = 7/3 ∉ N the symmetry conditions are OK. And as n ∈ Nodd we will consider a first-grade base 
winding as follows: 
 
 Q* = 36, p* = 7,  m = 3,   q = 6/7. 
 

qk 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 
phase U V W U V W U V W U V W U V W U V W U V W 

 
 ( ) 7

6
7
1

av 1110111 =++++++=q . 
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The number of slots per pole and phase can thus also be smaller than one q < 1. In such a case, there 
occur coil groups with no coils. These non-existent coil groups are naturally evenly distributed in all 
phases. 
 
SOLUTION: c) The number of slots per pole and phase is q = z/n = 42/(2⋅3⋅3) = 2 1/3. z = 7 and n = 
3, which are mutually divisible, the condition n/3 ∉ N is not met, and the winding is not symmetric. 
If we, despite the non symmetrical nature, considered a first-grade base winding, we should get a 
result as follows: 
 
 Q* = 42, p* = 3,  m = 3,   q = 21/3. 
 

qk 2 2 3 2 2 3 2 2 3 
phase U V W U V W U V W 

 
We can see that all coil groups with two coils now belong to the phase W. Such a winding is not 
functional. 
 
EXAMPLE 2.20: Create a winding with Q =  60, p = 8, m = 3.  
 
SOLUTION: The number of slots per pole and phase is q = 60/(2⋅8⋅3) = 11/4. z = 5, n = 4. The largest 
common divider of Q and p is t = 2p/n = 16/4 = 4. As t also indicates the number of layers in the 
phasor diagram we get Q' = Q/t = 60/4 = 15 which is the number of radii in the phasor diagram in 
one layer. Q'/m = 15/3 = 5 ∈ Nodd. The conditions of symmetry p/n = 8/4 = 2 ∈ N and n/3 = 4/3 ∉ N 
are met. Because n = 4 ∈ Neven, we have according to the parameters in Table 2.7 a second-grade 
single-layer fractional slot winding. We get the base winding parameters 
 

Q* = 2Q/t = 2⋅60/4 = 30,  p* = n = 4,  t* = 2 
  
The second-grade single-layer fractional slot windings are designed like the first-grade windings. 
However, the voltage phasor diagram is now doubled. The coil group diagram of the base winding 
comprises p*⋅m = n⋅m = 4⋅3 = 12 coil groups. The coil group phase diagram is selected as follows: 
 

qk 2 1 1 1 2 1 1 1 2 1 1 1
phase U V W U V W U V W U V W

 
A coil group diagram for a base winding corresponding to this case is illustrated in Fig. 2.33. 
 

phase     U      V      W     U      V      W      U      V     W      U      V      W      U
qk          2       1       1       1       2       1       1       1      2       1        1      1

1             5                       11           15                     21           25                     31           35
2   3   4   6   7   8   9  10  12 13 14 16 17 18 19 20 22 23 24 26 27 28 29 30 32 33 34 36 ...

base winding

slots

base winding  
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Figure 2.33. Coil group diagram of a base winding for a single-layer fractional slot winding p = 8, m = 3, Q = 60, q = 
11/4 .  
 
A voltage phasor diagram for the base winding is illustrated in Fig. 2.34. 
 
 Number of layers in the voltage vector diagram t* = 2 (second-grade winding) 
 Number of radii     Q' = Q*/t* = 30/2 = 15 
 Slot angle      αu = 360°p*/Q* = 360°⋅4/30 = 48° 
 Phasor angle      αz = 360°t*/Q* = 360°⋅2/30 = 24° 
 Number of phasors skipped in the numbering (p*/t*) − 1 = 4/2 − 1 = 1. 
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Figure 2.34 a). Voltage phasor diagram of the base winding p* = 4, Q* = 30, t* = 2, Q' = 15, αu = 2αz = 48° of a single-
layer fractional slot winding p = 12, m = 3, Q = 60, q = 11/4. The phasors belonging to the phase U are illustrated with a 
continuous line. b) The phasors of the phase U turned for calculating the winding factor and for illustrating a 
symmetrical bunch of phasors. 
 
The number of phasors Z = 10 for one phase and the angle between the phasors in the bunch is αz = 
24°. After having found the angles αρ with respect to the symmetry line the fundamental winding 
factor may be calculated using Eq. (2.16) 
 

( ) ( ) ( )( ) 951.0
10

2246cos126cos26cos2
w1 =

⋅°+°+°+°+°
=k . 

  
  
2.12.2 Double-Layer Fractional Slot Windings 
 
In double-layer windings, one of the coil sides of each coil is in the upper layer of the slot, and the 
other coil side is in the bottom layer. The coils are all of equal span. Consequently, when the 
positions of the left coil sides are defined, also the right sides will be defined. Here double-layer 
fractional slot windings differ from single-layer windings. Let us now assume that the left coil sides 
are positioned in the upper layer. For these coil sides of the upper layer, a voltage phasor diagram of 
a double-layer winding is valid. Contrary to the voltage phasor diagram illustrated in Fig. 2.34, there 
is only one layer in the voltage phasor diagram of the double-layer fractional slot winding. 
Therefore, the design of a symmetrical double-layer fractional slot winding is fairly straightforward 
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with a voltage phasor diagram of a base winding. Now, symmetrically distributed closed bunches of 
phasors are composed of the phasors of single phases. This phasor order produces the minimum 
divergence when compared with the current linkage distribution of the integral slot winding.  
 
First, we investigate first-grade double-layer fractional slot windings. It is possible to divide the 
phasors of such a winding into bunches of equal size, in other words, into zones of equal width.  
 
EXAMPLE 2.21: Design the winding previously constructed as a single-layer winding Q = 168, p = 
20, m = 3, q = 12/5 now as a double layer winding. 
 
SOLUTION: We have a fractional slot winding for which the divider n = 5. The conditions of 
symmetry (Table 2.6) p/n = 20/5 = 4 ∈ N and n/3 = 5/3 ∉ N are met. According to Table 2.7, if n is 
an odd number n = 5 ∈ Nodd, a first-grade fractional slot winding is created. The parameters of the 
voltage phasor diagram of such a winding are: 
 
 Number of layers in the voltage phasor diagram t* = 1 
 Number of pole pairs in the base winding  p* = 5 
 Number of radii     Q' = Q*/t* = 42 
 Slot angle      αu = 360°p*/Q* = 360°⋅5/42 = 426/7° 
 Phasor angle      αz = 360°t*/Q* = 360°⋅1/42 = 84/7° 
 Number of phasors skipped in the numbering (p*/t*) − 1 = 5 − 1 = 4. 
 
Since t* = 1, the number of radii Q' is the same as the number of phasors Q*, and we obtain Q*/m = 
42/3 = 14 phasors for each phase, which then are divided into negative Z- and positive Z+ phasors. 
The number of phasors per phase in the first-grade base winding is Q*/m = Q/mt ∈ Neven. In normal 
cases, there is no zone variation, and the phasors are evenly divided into positive and negative 
phasors. In the example case, the number of phasors of both types is seven, Z- = Z+ = 7. By 
employing a normal zone order -U, +W, -V, +U, -W, +V we are able to divide the voltage phasor 
diagram into zones with seven phasors in each, Fig. 2.35. 
 
When the voltage phasor diagram is ready, the upper layer of the winding is set. The positions of the 
coil sides in the bottom layer are defined when an appropriate coil span is selected. For fractional 
slot windings, it is not possible to construct a full-pitch winding, because q ∉ N. For a winding in 
question, the full-pitch coil span yQ of a full-pitch winding would be y in slot pitches 
 

 N∉=⋅===
5
14

5
213mqyy Q , 

 
which is not possible in practice because the step has, of course, to be an integer number of slot 
pitches. 
 
Now the coil span may be decreased by yv = 1/5. The coil span thus becomes an integer, which 
enables the construction of the winding. 
 

 N∈=−⋅=−= 4
5
1

5
213vymqy . 

 
Double-layer fractional slot windings are thus short-pitched windings.  
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Figure 2.35 a) Voltage phasor diagram of a first-grade double-layer base winding p* = 5, m = 3, Q' = Q* = 42, q* = 
12/5, t* = 1, αu = 5αz = 426/7°, αz = 84/7°, b) A couple of examples of coil voltages in the phase U. 
 
When constructing a two-layer fractional slot winding, there are two coil sides in each slot. Hence, 
we have as many coils as slots in the winding. In this example, we first locate the U-phase bottom 
coil side in slot 1. The other coil side is placed according to the coil span of y = 4 at a distance of 
four slots in the upper part of slot 5. Similarly, coils run from 2 to 6. The coils to be formed are 1–5, 
18–22, 35–39, 10–14, 27–31, 2–6, and 19–23. Starting from the +U zone, we have coils 22–26, 39–
1, 14–18, 31–35, 6–10, 23–27, and 40–2. Now, six coil groups with one coil in each and four coil 
groups with two coils in each are created in each phase. The average is   
 

 ( )
5
21

10
142416

10
1

==⋅+⋅=q . 

 
A section of the base winding of the constructed winding is illustrated in Fig. 2.36. 
 

1               5                   10                 15                 20                  25                 30                  35                  40    42  1

U2 ...U1  
 
Figure 2.36. Base winding of a fractional slot winding. p = 20, m = 3, Q = 168, q = 12/5. The U1 end of the base winding 
is placed in the slot 40. 
 
Next, a configuration of a second-grade double-layer fractional slot winding is investigated. Because 
now Q'/m = Q*/m = Q/mt ∈ Nodd, a division Z- = Z+ is not possible. In other words, all the zones of 
the voltage phasor diagram are not equal. The voltage phasor diagram can nevertheless be 
constructed so that phasors of neighbour zones are not located inside the zones of each other. 
 
EXAMPLE 2.22: Create a second-grade double-layer fractional slot winding with Q = 30, p = 4, m = 
3.  
 
SOLUTION: The number of slots per pole per phase is written 
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 ½2
322

30
=

⋅⋅
=q . 

 
As n = 2 ∈ Neven, we have a second-grade double-layer fractional slot winding. Because t = 2p/n = 2, 
its parameters are: 
 
 Q* = Q/t = 30/2 = 15, 
 p* = n/2 = 2/2 = 1, 
 t* = 1. 
 
This winding shows that a base winding of a second-grade double-layer fractional slot winding can 
only be of the length of one pole pair. The parameters of the voltage phasor diagram are: 
 
 Number of layers in the voltage phasor diagram t* = 1 = p* 
 Number of radii     Q' = Q*/t* = 15 
 Slot angle      αu = 360°p*/Q* = 360°/15 = 24° 
 Phasor angle      αz = 360°t*/Q* = 360°/21 = 24° 
 Number of phasors skipped in the numbering (p*/t*) − 1 = 0. 
 
For each phase, we obtain Q'/m = Q*/m = 15/3 = 5 phasors. This does not allow an equal number of 
negative and positive phasors. If a natural zone variation is employed, we have to set either Z+ = Z- 
+ 1 or Z+ = Z- − 1. In the latter case, we obtain Z- = 3 and Z+ = 2. With the known zone variation, 
electrical zones are created in the voltage phasor diagram, for which the number of phasors varies: 
Z- = 3 phasors of zone -U, Z+ = 2 phasors of zone +W, Z- = 3 phasors of zone –V, and so on, Fig. 
2.37.  

 
 
 
 
Figure 2.37. Voltage phasor diagram of a 
second-grade double-layer fractional slot 
winding. p* = 1, m = 3, q = 2½, Q' = 
Q*/t* = 15, αu = 360°p*/Q* = 360°/15 = 
24°, αz = 360°t*/Q* = 360°/15 = 24°, 
(p*/t*) − 1 = 0.  
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When the coil span is decreased by yv = ½, the coil span becomes an integer 
 
 10½½10v =−=−= ymqy . 
 
The winding diagram of Fig. 2.38 shows that all the positive coil groups consist of three coils, and 
all the negative coil groups comprise two coils, which yields an average of q = 2½. Since all 
negative and all positive coil groups are comprised of an equal number of coils, respectively, the 
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winding can be constructed as a wave winding. A wave is created that passes through the winding 
three times in one direction and two times in the opposite direction. The waves are connected in 
series to create a complete phase winding.  
 

1   2    3  4    5   6   7   8   9  10  11 12 13 14 15 16 17 18 19 20 21  22  23 24 25 26 27 28 29 30

U1 U2

1   2    3  4    5   6   7   8   9  10  11 12 13 14 15 16 17 18 19 20 21  22  23 24 25 26 27 28 29 30

U1 U2a)

b)  
Figure 2.38. Winding diagram of a double-layer fractional slot winding. p = 2, m = 3, Q = 30 q = 2½. a) lap winding, b) 
wave winding. To simplify the illustration, only a single phase is shown. 
 
EXAMPLE 2.23: Create a fractional slot winding for the three phase machine, where the number of 
slots is 12, and the number of rotor poles is 10, Fig. 2.39.  
 
SOLUTION: The number of slots per pole and phase is q = 12/(3⋅10) = 2/5 = z/n = 0.4. Hence, n = 
5. We should thereby find a base winding of the first kind. According to Table 2.6, p/n ∈ N. In this 
case 5/5 ∈ N. In a three-phase machine n/m  ∉  N → n/3  ∉  N. Now 5/3  ∉  N and the symmetry 
conditions are met. Let us next consider Table 2.7 parameters. The largest common divider of Q 
and p is t = p/n = 5/5 = 1, Q/tm = 12/(1⋅3) = 4 which is an even number. The slot angle in the 
voltage phasor diagram is 

t
Q

nn π2
zu == αα , 

6
5π1

12
π255 zu === αα  

The number slots in the base windings is Q/t = 12 and the number of pole pairs in the base winding 
is p/t = n = 5. The winding may be realized either as a single- or double-layer winding, and in this 
case, a double-layer winding is found. In drawing the voltage phasor diagram, the number of 
phasors skipped in the numbering is (p*/t*) − 1= ((p/t)/t*) – 1 = ((5/1)/1) – 1  = 4. 
 



J. Pyrhönen, T. Jokinen, V. Hrabovcová 2.68   

1

2

3

4

5

6

7

8

9

10

11

12

-U

-U

+U

+W

-W

-W

+W

-V

-V

+V

+V

+U

+W

-U

-W

-V
+V+U

+U

-U

-W

+W

+V
-V

o

 

α = 30

top layer
bottom layer

933.0
4

230cos2 o

w1 =
+

=k

 

U2

U2

-U1

-U3

U8

U8

-U7

-U9

a)          b)           c)

-U
-U

-W

+V

-U

+U
+U

+W +V

-W+W

-V

-V

1

2

3

4

11

10

9

8

7

6

5

12

 
 
Figure 2.39. a) Phasors of a 12-slot 10-pole machine, b) the double-layer winding of a 12-slot 10-pole machine, c) the 
phasors of the phase U for the calculation of the winding factor. 
 
First, 12 phasors are drawn (a number of Q', when Q' = Q*/t*). The phasor number 1 is positioned 
to point straight upwards, and the next phasor, number 2, is located at an electrical angle of 360⋅p/Q 
from the first phasor, in this case 360⋅5/12 = 150 degrees. The phasor number 3 is, again, located at 
an angle of 150 degrees from the phasor 2 etc. The first coil 1–2 (−U, +U) will be located on the top 
layer of the slot 1 and on the bottom layer of the slot 2. The other coil (+U, −U) 2 – 3 will be located 
on the top layer of the slot 2 and on the bottom layer of the slot 3. The phase coils are set in the 
order U, −V,  W, −U,  V, −W. In the example, a single phase zone comprises four slots, and thus a 
single winding zone includes two positive and two negative slots.   
 
Based on the voltage phasor diagram of 2.39a and the winding construction of 2.39b, the 
fundamental winding factor of the machine can be solved, Fig. 2.39c. First, the polarity of the coils 
of phase U in Fig. 2.39b are checked and the respective phasors are drawn. In the slots 1, 2, and 3, 
there are four coil sides of the phase U in total, and the number of phasors will thus be four. Now, 
the angles between the phasors and their cosines are calculated. This yields a winding factor of 
0.933. 
 
EXAMPLE 2.24: Create a fractional slot winding for the three-phase machine, in which the number 
of slots is 21, and the number of rotor poles is 22, Fig. 2.40.  
 
SOLUTION: The number of slots per pole and phase is thus only q = 21/66 = z/n = 7/22 = 0.318. As 
n ∈ Neven, we have a fractional slot winding of the second grade. Although a winding of this kind 
meets the symmetry conditions, it is not an ideal construction, because in the winding, all the coils 
of a single phase are located in the same side of the machine. Such a coil system may produce 
harmful unbalanced magnetic forces in the machine.  
 
Figure 2.40a. 21 phasors are drawn (a number of Q’, when Q’ = Q*/t*). The phasor number 1 is 
placed at the top and the next phasor at the distance of 360⋅p/Q from it. In this example, the distance 
is thus 360⋅11/21 = 188.6 degrees. The phasor number 2 is thus set at an angle of 188.6 degrees 
from the phasor 1. The procedure is repeated with the phasors 3, 4, ... etc. The phase coils are set in 
the order –W,  U,  -V,  W,  -U,  V. Here a single phase consists of seven slots, and therefore we 
cannot place an equal number of positive and negative coils in one phase. In one phase, there are 
four positive and three negative slots. Note that we are now generating just the top winding layer, 
and when also the bottom winding is inserted, we have an equal number of positive and negative 
coils.  
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Figure 2.40. a) The winding of a 21-slot 22-pole machine, b) Phasors of a 21-slot 22-pole machine, and c) The phasors 
of the phase U for the calculation of the winding factor. 
 
Figure 2.40 b. The coils are inserted in the bottom layer of the slots in Fig. 2.40 b) according to the 
phasors of Fig. 2.40 a). The phasor number 1 of Fig. 2.40 a) is –U, and it is located in the top layer 
of the slot 1. Correspondingly, the phasor 2, +U, is mounted in the top layer of the slot 2. The 
bottom winding of the machine repeats the order of the top winding. When the top coil sides are 
transferred by a distance of one slot forward and the ± sign of each is changed, a suitable bottom 
layer is obtained. The first coil of the phase U will be located in the bottom of the slot 21 and on the 
surface of the slot 1, and so on. 
 
Table 2.10 introduces some parameters of double-layer fractional slot windings, when the number 
of slots q ≤  0.5 (Salminen 2004). 
 
Table 2.10 Winding factors kw1 of the fundamental and numbers of slots per pole and phase q for double-layer three-
phase fractional slot concentrated windings (q ≤  0.5). The boldface figures are the highest values in each column. 
Reproduced by permission of Pia Salminen. 

 Qs 
Number 
of poles 

4 

2p 
6 

 
8 

 
10 

 
12 

 
14 

 
16 

 
20 

 
22 

 
24 

 
26 

6 kw1 
q 

0.866 
0.5 

** 0.866 
0.25 

0.5 
0.2 

** 0.5 
0.143 

0.866 
0.125 

0.866 
0.1 

0.5 
0.091 

** 0.5 
0.077 

9 kw1 
q  0.866 

0.5 
* 

0.375 
* 

0.3 
0.866 
0.25 

0.617 
0.214 

0.328 
0.188 

0.328 
0.15 

0.617 
0.136 

0.866 
0.125 

0.945 
0.115 

12 kw1 
q   0.866 

0.5 
0.933 

0.4 
** 0.933 

0.286 
0.866 
0.25 

0.5 
0.2 

0.25 
0.182 

** 0.25 
0.154 

15 kw1 
q    0.866 

0.5 
** * 

0.357 
* 

0.313 
0.866 
0.25 

0.711 
0.227 

** 0.39 
0.192 

18 kw1 
q     0.866 

0.5 
0.902 
0.429 

0.945 
0.375 

0.945 
0.3 

0.902 
0.273 

0.866 
0.25 

0.74 
0.231 

21 kw1 
q      0.866 

0.5 
0.89 
0.438 

* 
0.35 

* 
0.318 

** 0.89 
0.269 

24 kw1 
q       0.866 

0.5 
0.933 
0.4 

0.949 
0.364 

** 0.949 
0.308 

* not recommended as single base winding because of unbalanced magnetic pull 
** not recommended, because the denominator n (q = z/n) is an integral multiple of the number of phases m.  
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2.13 Single- and Two-Phase Windings 
  
The above three-phase windings are the most common rotating-field windings employed in poly-
phase machines. Double- and single-phase windings, windings permitting a varying number of 
poles, and naturally also commutator windings are common in machine construction. Of 
commutator AC machines, nowadays only single-phase supplied series-connected commutator 
machines occur for instance as motors of electric tools. Poly-phase commutator AC machines will 
eventually disappear as the power electronics enables an easy rotation speed control of different 
motor types.  
 
Since there is no two-phase supply network, two-phase windings occur mainly as auxiliary and main 
windings of machines supplied from a single-phase network. In some special cases, for instance 
small auxiliary automotive drives such as fan drives, two-phase motors are also used in power 
electronic supply. A two-phase winding can also be constructed on the rotor of low-power slip-ring 
asynchronous motors. As known, a two-phase system is the simplest possible winding that produces 
a rotating field, and it is therefore most applicable to rotating-field machines. In a two-phase supply, 
however, there exist time instants when the current of either of the windings is zero. This means that 
each of the windings should alone be capable of creating as sinusoidal a supply as possible to 
achieve low harmonic content in the air gap and low losses in the rotor. This makes the design of 
high-efficiency two-phase winding machines more demanding than three-phase machines. 
 
The design of a two-phase winding is based on the principles already discussed in the design of 
three-phase windings. However, we must always bear in mind that in the case of a reduced poly-
phase system, when constructing the zone distribution, the signs of the zones do not vary in the way 
they do in a three-phase system, but the zone distribution will be -U, -V, +U, +V. In a single-phase 
asynchronous machine, the number of coils of the main winding is usually higher than the number 
of coils of the auxiliary winding.  
 
EXAMPLE 2.25: Create a 5/6 short-pitched double-layer two-phase winding of a small electrical 
machine, Q = 12, p = 1, m = 2, q = 3. 
 
SOLUTION: The required winding is illustrated in Fig. 2.41, where the rules mentioned above are 
applied.  
 
 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

U1 U2V1 V2

4

 
Figure 2.41. Symmetrical 5/6 short-pitched double-layer two-phase winding, Q = 12, p = 1, m = 2, q = 3.  
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When considering a single-phase winding, we must bear in mind that it does not, as a stationary 
winding, produce a rotating field, but a pulsating field. A pulsating field can be presented as a sum 
of two fields rotating in opposite directions. The armature reaction of a single-phase machine has 
thus a field component rotating against the rotor. In synchronous machines, this component can be 
damped with the damper windings of the rotor. However, the damper winding copper losses are 
significant. In single-phase squirrel cage induction motors, the rotor also creates extra losses when 
damping the negative-sequence field. 
 
Also the magnetizing windings of the rotors of non-salient pole machines belong to the group of 
single-phase windings, as exemplified at the beginning of the chapter. If a single-phase winding is 
installed on the rotating part of the machine it, of course, creates a rotating field in the air gap of the 
machine contrary to the pulsating field of a single-phase stator winding. 
 
Large single-phase machines are rare, but for instance in Germany, single-phase synchronous 
machines are used to feed the supply network of 16 2/3 Hz electric locomotives. Since there is only 
one phase in such a machine, there are only two zones per pole pair, and the construction of an 
integral slot winding is usually relatively simple. In these machines, damper windings have to cancel 
the negative sequence field. This, however, obviously is problematic because lots of losses are 
generated in the damper. 
 
The core principle also in designing single-phase windings is to aim at as sinusoidal distribution of 
the current linkage as possible. This is even more important in the single-phase windings than in the 
three-phase windings, the current linkage distribution of which is by nature closer to ideal. The 
current linkage distribution of a single-phase winding can be made to resemble the current linkage 
distribution of a three-phase winding instantaneously in a position where a current of one phase of a 
three-phase winding is zero. At that instant, a third of the slots of the machine are in principle 
currentless. The current linkage distribution of a single-phase machine can best be made to approach 
a sinusoidal distribution when a third of the slots are left without conductors, and a different number 
of turns of coil are inserted in each slot. The magnetizing winding of a non-salient pole machine of 
Fig. 2.3 is illustrated as an example of such a winding. 
 
EXAMPLE 2.26: Create various kinds of zone distributions to approach a sinusoidal current linkage 
distribution for a single-phase winding with m = 1, p = 1, Q = 24, q = 12. 
 
SOLUTION: Figure 2.42 depicts various methods to produce a current linkage waveform with a 
single-phase winding. 

-U +U -U

-U +W -V +U -W +V

current 
linkage

a)

b)

c)

a)
b)

c)

 
 
Figure 2.42. Zone diagram of a single-phase winding p = 1, Q = 24, q = 12, and current linkage distributions produced 
by different zone distributions. a) A single-phase winding covering all slots. b) A 2/3 winding, with the zones of a 
corresponding three-phase winding. The three phase zones +W and -W are left without conductors. The distribution of 
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the current linkage is better than in the case a). c) A 2/3 short-pitched winding, producing a current linkage distribution 
closer to an ideal (dark stepped line).   
  
 

2.14 Windings Permitting a Varying Number of Poles 
 
Here, windings permitting a variable pole number refer to such single- or poly-phase windings that 
can be connected via terminals to a varying number of poles. Windings of this type occur typically 
in asynchronous machines, when the rotation speed of the machine has to be varied in a certain ratio. 
The most common example of such machines is a two-speed motor. The most common connection 
for this kind of an arrangement is a Lindström-Dahlander connection that enables the alteration of 
the pole number of a three-phase machine in the proportion of 1 to 2. Figure 2.43 illustrates the 
winding diagram of a single phase of a 24-slot machine. It can be arranged as a double-layer 
diamond winding, which is a typical Dahlander winding. Now the smaller number of pole pairs is 
denoted p' and the higher p'', where p'' = 2p'. The winding is divided into two sections U1–U2 and 
U3–U4, both of which consist of two coil groups with the higher number of poles. 
 
The Dahlander winding is normally realized for the higher pole pair number as a double-layer 
double zone width winding. The number of coil groups per phase is equal to p", which is always an 
even number. Deriving a double-layer integral slot full-pitch (short-pitch or fractional slot Dahlander 
windings are not possible at all) Dahlander winding starts with creating mp" negative zones with a 
double width. All the negative zones –U, -V, -W are located in the top layer and all the positive 
zones in the bottom layers of slots. 
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Figure 2.43. Principle of a Dahlander winding. The upper connection a) produces eight poles and the lower c) four poles. 
The number of poles is shown by the flux arrowheads and tails b) and d) equivalent connections. When also the number 
of the coil turns of the phase varies inversely proportional to the speed, the winding can be supplied with the same 
voltage at both speeds. Network connections are U, V, and W. The figure illustrates only a winding of one phase. In Fig. 
2.43d between U1 and U4 there is the connection W, between W4 and W1 there is U, and between V1 and V4 there is V 
to keep the same direction of rotation, e) and f) zone plans for p" = 4 and p' = 2. 
 
The phase U is followed by the winding V at a distance of 120°. For a number of pole pairs p'' = 4, 
the winding V has to be placed at a distance  
 

 uuu 2
43

24
''3

τττ =
⋅

=
p
Q  

 
from the winding U. The winding V starts thus from the slot 3 in the same way as the winding U 
starts from the slot 1. The winding W starts then from the slot 5. When considering the pole pair 
number p' = 2, we can see that the winding V is placed at a distance  
 

 uuu 4
23

24
'3

τττ =
⋅

=
p

Q  

 
from the winding U and starts thus from the slot 5, and the winding W from the slot 9. External 
connections have to be arranged to meet these requirements. At simplest, the shift of the above-
mentioned pole pair from one winding to another is carried out according to the right-hand circuit 
diagrams. To keep the machine rotating to the same direction, the phases U, V, and W have to be 
connected according to the illustration. 
 
There is also another method to create windings with two different pole numbers. Pole-Amplitude-
Modulation (PAM) is a method with which even other ratios than 1:2 may be found. PAM is based 
on the following trigonometric equation 
 

( ) ( )( )αααα mbmbmb coscos
2
1sinsin pppppp +−−= .    (2.103) 

 
The current linkage is produced as a function of the angle α running in the perimeter of the air gap. 
A phase winding might be realized with a base pole pair number pb and a modulating pole pair 
number pm. In practice, this means that if for instance pb = 4 and pm = 1, the PAM method produces 
pole pairs 4 – 1 or 4 + 1. The winding must be created so that one of the harmonics is damped and 
the other dominates.  
 
 

2.15 Commutator Windings 
 
A characteristic of poly-phase windings is that the phase windings are, in principle, galvanically 
separated. The phase windings are connected via terminals to each other, in star or in a polygon. 
The armature winding of commutator machines does not start nor ends at terminals. The winding is 
comprised of turns of conductor soldered as a continuum and wound in the slots of the rotor so that 
the sum of induced voltages is always zero in the continuum. This is possible if the sum of slot 
voltages is zero. All the coil sides of such a winding can be connected in series to form a continuum 
without causing a current flow in the closed ring as a result of the voltages in the coil sides. An 
external electric circuit is created by coupling the connection points of the coils to the commutator 
segments. A current is fed to the winding via brushes dragging along the commutator. The 
commutator switches the coils in turns to the brushes acting thus as a mechanical inverter or 
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rectifier depending on the operating mode of the machine. This is called commutating. In the design 
of a winding, the construction of a reliable commutating arrangement is a demanding task.  
 
Commutator windings are always double-layer windings. One coil side of each coil is always in the 
upper layer and the other in the bottom layer approximately at a distance of a pole pair from each 
other. Because of problems in commutating, the voltage difference between the commutator 
segments must not be too high, and thus the number of segments and coils has always to be high 
enough. On the other hand, the number of slots is restricted by the minimum width of the teeth. 
Therefore, usually more than two coil sides are placed in each slot. In the slot of the upper diagram 
of Fig. 2.44, there are two coil sides, and in the lower diagram, the number of coil sides is four. The 
coil sides are often numbered so that the sides of the bottom layer are even numbers, and the slots of 
the upper layer are odd numbers. If the number of coils is zc, 2zc coil sides have to be mounted in Q 
slots, and thus there are 2u = 2zc/Q sides in a slot. The symbol u gives the number of coil sides in 
one layer. In each side, there are Nv conductors. The total number of conductors z in the armature is 
 
 vcvQ 22 NzQuNQzz === .        (2.104) 
Here 
Q  is the number of slots,  
zQ is the number of conductors in a slot, 
u  is the number of coil sides in a layer,  
zc  is the number of coils 

Nv, number of conductors in a coil side, 2uNv = zQ , because v
v

Q 22 uN
Q

QuN
Q
zz === , see (2.104). 

 
 
 
 
 
 
Figure 2.44. Two examples of commutator 
winding coil sides mounted in the slots. a) Two 
coil sides in a slot, one side in a layer, u = 1 b) 
four coil sides in a slot, two coil sides in a 
layer, u = 2. Even-numbered coil sides are 
located at the bottom of the slots. There has to 
be a large enough number of coils and 
commutator segments to keep the voltage 
between commutator segments small enough. 
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Commutator windings may be used both in AC and DC machines. Multi-phase commutator AC 
machines are, however, becoming rare. DC machines, instead, are built and used also in the present-
day industry even though DC drives are gradually replaced by power electronic AC drives. 
Nevertheless, it is advisable to briefly look also at the DC windings. 
 
The AC and DC commutator windings are in principle equal. For simplicity, the configuration of 
the winding is investigated with a voltage phasor diagram of a DC machine. Here, it suffices to 
investigate a two-pole machine, since the winding of machines with multiple poles is repeated 
unchanged with each pole pair. The rotor of Figure 2.45, with Q = 16, u = 1, is assumed to rotate 
clockwise at an angular speed Ω in a constant magnetic field between the poles N and S. 
 
The magnetic field rotates to the positive direction with respect to the conductors in the slots, that 
is, counterclockwise. Now, a coil voltage phasor diagram is constructed for a winding, in which we 
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have already calculated the difference of the coil side voltages given by the coil voltage phasor 
diagram. By applying the numbering system of Fig. 2.44, we have in the slot 1 the coil sides 1 and 
32, and in the slot 9 the coil sides 16 and 17. With this system, the coil voltage phasor diagram can 
be illustrated as in Fig. 2.45b. 
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Figure 2.45. a) Principle of a two-pole double-layer commutator armature. The armature rotates at an angular speed Ω 
clockwise generating an emf to the conductors in the slots. The emf tends to create the current directions illustrated in 
the figure. b) A coil voltage phasor diagram of the armature. It is a full-pitch winding, which does not normally occur as 
a commutator winding. Nevertheless, a full-pitch winding is here given as a clarifying example. Q = 16, u = 1 (one coil 
side per layer).  
 
Figure 2.45 shows that if the induced emf decides the direction of the armature current, the produced 
torque is opposite to the direction of rotation (counterclockwise in Fig. 2.45), and mechanical power 
has to be supplied to the machine, which is acting as a generator. Now, if the armature current is 
forced to flow against the emf with the assistance of an external voltage or current source, the torque 
is to the direction of rotation, and the machine acts as a motor.  
 
There are zc = Qu = 16×1 = 16 coils in the winding, the ends of which should next be connected to 
the commutator. Depending on the way they are connected, different kinds of windings are 
produced. Each connection point of the coil ends is connected to the commutator. There are two 
main types of commutator winding s, viz. lap windings and wave windings. A lap winding has 
coils, creating loop-like patterns. The ends of coils are connected to adjacent commutator segments. 
A wave winding has a wave-like drawing-pattern when presented in a plane.  
 
The number of commutator segments is given by 

QuK = ,         (2.105) 

because each coil side begins and ends at the commutator segment. The number of commutator 
segments, therefore, depends on the conductor arrangement in the slot, eventually on the number of 
coil sides in one layer. Further important parameters of commutator windings are: 
 

yQ  coil span expressed in the number of slots per pole 
y1 back end connector pitch which is a coil span expressed in the number of coil sides. For the 

winding the coil sides of which are numbered with odd figures in the top layer and with 
even figures in the bottom layer is: 

 
12 Q1 muyy = ,         (2.106) 

 
where  
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− sign stands for a coil side numbering as seen in Fig. 2.44, and the + sign for a numbering, 
where in the slot 1 there are coil sides 1, 2, in the slot 2, coil sides 3, 4, etc, if u = 1, or in the top 
layer of the slot 1 coil sides 1, 3, and in the bottom layer 2,4, etc., if u = 2.  
 
y2  front end connector pitch; it is a pitch expressed in the number of coil sides between the 

right coil side of one coil and the left coil side of the next coil. 
 
y  total winding pitch expressed in the number of coil sides between two left coil sides of the 

two adjacent coils 
yc commutator pitch between the beginning and end of one coil expressed in the number of 

commutator segments.  
 

The equation for the commutator pitch is a basic equation for the winding design because this pitch 
must be an integer 

p
anKy ±

=c ,          (2.107) 

where a is the number of parallel paths per half armature in a commutator winding, which means 2a 
parallel paths for the whole armature. 
 
The most often employed windings are characterized on the basis of n:     

1) If n = 0, it results in a lap winding. The commutator pitch will be: 
p
ay ±=c , which means that  

a is an integer multiple of p to get an integer for the commutating pitch. If for a lap winding 2a = 
2p, this means a = p, 1c ±=y . Such a winding is called a parallel one. The positive sign is for a 
progressive winding, moving from left to right, and the negative sign for a retrogressive winding, 
moving from right to left. If a is a k-multiple of the pole pair number, a = kp, then it is a k-multiplex 
parallel winding. For example for a = 2p, the commutator pitch is 2c ±=y , and this winding is 
called a duplex parallel winding. 
 
2) If  n = 1, it results in a wave winding and a commutator pitch 
 

 
p

auQ
p

aKy ±
=

±
=c         (2.108) 

 
must be an integer. The positive sign is for progressive and the negative sign for retrogressive 
winding. In the wave winding the number of parallel paths is always 2, there is only one pair of 
parallel paths, irrespective of the number of poles: 2a = 2, a = 1.  
 
Not all the combinations of K, a, p result in an integer. It is a designer’s task to choose a proper 
number of slots, coil sides, number of poles, and type of winding to ensure an integer 
commutator pitch.  

 
If the number of coils equals the number of commutator segments, then, if the coil sides are 
numbered with odd figures in the top layer and even figures in the bottom layer, we may write: 

c21 2yyyy =+= .         (2.109) 

 
Therefore, if the commutator pitch is determined, the total pitch expressed as a number of coil sides 
is given 
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c2yy =          (2.110) 

and after y1 is determined based on the numbers of slots per pole yQ and number of coil sides in a 
layer u:  

,
2Q p
Qy ≅          (2.111) 

12 Q1 myuy = .        (2.112) 

The front end connector pitch can be determined as:  

12 yyy −= .         (2.113) 

 
 
2.15.1 Lap Winding Principles 
 
The principles of the lap winding can best be explained by an example: 
  
EXAMPLE 2.27: Make a layout of a lap winding for a two-pole DC machine with 16 slots and one 
coil side in a layer. 
 
SOLUTION: Given: Q = 16, 2p = 2, u = 1, the number of commutator segments K is 

16161 =⋅== uQK , and for a lap winding 2a = 2p = 2. The commutator pitch is 1c ±=±=
p
ay .  

We choose a progressive winding, which means that 1c +=y  (The winding proceeds from left to 
right), and the total pitch is 22 c == yy . The coil span yQ in the number of slots is given by the 
number of slots per pole: 

8
2

16
2Q ===

p
Qy . The same pitch expressed in the number of coil sides is:  

15181212 Q1 =−⋅⋅=−= uyy . The front end connector pitch is: 1315212 −=−=−= yyy , which 
is illustrated in Fig. 2.46. The coils can be connected in series in the same order they are inserted in 
the slots of the rotor. The neighbouring coils are connected together, the coil 1–16 to the coil 3–18, 
this again to 5–20 and so on. This yields a winding diagram of Fig. 2.46. 
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Figure 2.46. Diagram of a full-pitch lap winding. The winding is connected via brushes to an external resistance R. The 
pole shoes are also illustrated above the winding. In reality, they are placed above the coil sides. The laps illustrated 
with a thick line have been short-circuited via the brushes during commutation. The direction of current changes during 
the commutation. The numbers of slots (1–16) are given. The numbers of coil sides (1–32) in the slots are also given, 
the coil sides 1 and 32 are located in the slot 1 and e.g. the coil sides 8, 9 are located in the slot 5. The commutator 
segments are numbered (1–16) according to the slots. It is said that the brushes are on the quadrature axis; this is 
nevertheless valid only magnetically. In this figure, the brushes are physically placed close to the direct axes. 
 
When we follow the winding by starting from the coil side 1, we can see that it proceeds one step of 
span y1 = 15 coil sides. In the slots 1 and 9, a coil with a large enough number of winding turns is 
inserted. Finally, after the last coil turn the winding returns left a distance of one step of connection 
y2 = 2 – 15= – 13 coil sides, to the upper coil side 3. We continue this way until the complete 
winding has been gone through, and the coil side 14 is connected to the upper coil side 1 through 
the commutator segment 1. The winding has now been closed as a continuum. The winding 
proceeds in laps from left to right; hence the name lap winding. 
 
The pitches of a commutator winding are thus calculated by the number of coil sides, not by the 
number of slots, because there can be more than two coil sides in one layer, for instance four coil 
sides in a slot layer (u = 1, 2, 3, 4…). 
 
In the lap winding of Fig. 2.46, all the coil voltages are connected in series. The connection in series 
can be illustrated by constructing a polygon of the coil voltages, Fig. 2.47. The figure illustrates the 
phasors at time t = 0 in the coil voltage phasor diagram of Fig. 2.45. When the rotor rotates at an 
angular speed Ω, also the coil voltage phasor diagram rotates in a two-pole machine at an angular 
speed ω = Ω. Also the polygon rotates around its centre at the same angular speed. The real 
instantaneous value of each coil voltage may be found as a projection of the phasor on the real axis 
(see figure). According to the figure, the sum of all coil voltages is zero. Therefore, no circulating 
currents occur in the continuum. 
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Figure 2.47. Polygon of coil voltages of the 
winding in Fig. 2.46. The sum of all the 
voltages is zero and hence the coils may be 
connected in series. The instantaneous value of 
a coil voltage u(t) will be the projection of the 
phasor on the real axis, e.g. u(t)19-2. 
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The highest value of the sum of the instantaneous values of coil voltages is equal to the diameter 
H1–H2 parallel to the real axis. This value remains almost constant as the polygon rotates, and thus 
the phasor H1–H2 represents a DC voltage without significant ripple. The voltage approaches a 
constant value, when the number of coils approaches infinite. A DC voltage can be connected to an 
external electric circuit via the brushes that are in contact with the commutator segments. At the 
moment t = 0, as illustrated, the brushes have to be in touch with the commutator segment pairs 5–6 
and 13–14, that are connected to coils 9–24 and 25–8. According to Fig. 2.46, the magnetic south 
pole (S) is at the slot 1 and magnetic north pole (N) at the slot 9. According to Fig. 2.46, the 
direction of the magnetic flux is towards the observer at the south pole, and away from the observer 
at the north pole. As the winding moves left, a positive emf is induced to the conductors under the 
south pole, and a negative emf under the north pole, to the direction pointed by the arrows.  
 
By following the laps from the segment 14 to the coil 27–10, we end up at the commutator segment 
15, then gradually to the segments 16, 1, 2, 3, 4, and at last the coil 7–22, is brought to the segment 
5, touched by the brush H2. We have just described one parallel path created by coils connected in 
series via commutator segments. An induced emf creates a current in the external part of the electric 
circuit from the brush H2 to the brush H1, and thus in generator drive, the H2 is a positive brush 
with the given direction of rotation. A half of the current I in the external part of the circuit flows 
the above-described path, and the other half via the coils 23–6 ... 11–26, via commutator segments 
12, 11, …7  to the brush H2 and further to the external part of the circuit. In other words, there are 
two parallel paths in the winding. In the windings of large machines, there can be several pairs of 
paths in order to prevent the cross-sectional area of the conductors from increasing impractically. 
Because the ends of different pairs of paths touch the neighbouring commutator segments and they 
have no other galvanic contact, the brushes have to be made wider to keep each pair of paths always 
in contact to the external circuit. 
 
If for instance in the coil voltage phasor diagram of Fig. 2.45 every other coil 1–16, 5–20, 9–24 ... 
29–12 is connected in series with the first pair of paths, the lap is closed after the last turn of coil 
side 12 by connecting the coil to the first coil 1–16 (12 → 1, from 12 to 1). The coils that remain 
free are connected in the order 3–18, 7–22 ... 31–14, and the lap is closed at the position 14 → 3. 
This way, a doubly-closed winding with two paths 2a = 2 is produced. In the voltage polygon, there 
are two revolutions, and its diameter, that is, the brush voltage is reduced to a half of the original 
polygon of one revolution illustrated in Fig. 2.47. The output power of the system remains the same, 
because the current can be doubled when the voltage is cut into half. In general, the number of pairs 
of paths a always requires that a – 1 phasors are left between the phasors of series-connected coils 
in a coil voltage phasor diagram. The phasors may be similar. Because u is the number of coil sides 



J. Pyrhönen, T. Jokinen, V. Hrabovcová 2.80   

per layer, each phasor of the coil voltage phasor diagram represents u coil voltages. This makes it 
possible to skip completely similar voltage phasors. This takes place for instance when u = 2. 
 
The winding of Fig. 2.46 is wound clockwise, because the voltages of the coil voltage phasor 
diagram are connected in series clockwise starting from the phasor 1–16. Were the coil 1–16 
connected via the commutator segment 16 to the coil 31–14, the winding would have been wound 
counterclockwise.  
 
The number of brushes in a lap winding is always the same as the number of poles. The brushes of 
the same sign are connected together. According to Fig. 2.46, the brushes always short-circuit those 
coils, the coil sides of which are located at the quadrature axis (in the middle, between two stator 
poles) of the stator, where the magnetic flux density created by the pole magnetizing is zero. This 
situation is also described by stating that the brushes are located at the quadrature axis of the stator 
independent of the real physical position of the brushes. 
 
 
2.15.2 Wave Winding Principles 
 
The winding of Fig. 2.46 can be turned into a wave winding by bending the coil ends of the 
commutator side according to the illustration of Fig. 2.48, as a solution of the Example 2.28 (see 
also Fig. 2.49). 
 
EXAMPLE 2.28: Make a layout of a wave winding for a two-pole DC machine with 16 slots and 
one coil side in a layer. 
 
SOLUTION: It is given that Q = 16, 2p = 2, u = 1. The number of commutator segments is 

16161 =⋅== uQK , and for a wave winding 2a = 2. The commutator pitch is 

17
1

116
c =

±
=

±
=

p
aKy , or 15.  We choose 15c +=y  (winding proceeds from right to left), and the 

total winding pitch is 302 c == yy . The coil span yQ in the number of slots is given by the number 

of slots per pole: 8
2

16
2Q ===

p
Qy . The same pitch expressed in the number of coil sides is:  

151812121 =−⋅⋅=−= Quyy . The front end connector pitch is: 15153012 =−=−= yyy , which 
is shown in Fig. 2.48. 
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Figure 2.48. Full-pitch lap winding of Fig. 2.46 turned into a wave winding. The currents of waveforms indicated with a 
thick line are commutating at the moment illustrated in the figure. The commutator pitch is yc = 15, which means almost 
two pole pitches. For instance the wave coil that starts at the commutator segment 14 ends at the segment 13, because 
14 + yc = 14 + 15 = 29, but there are only 16 commutator segments, and therefore 29 – 16 = 13. 
 
In the above wave winding, the upper coil side 1 is connected to the commutator segment 10, and 
not to the segment 1 as in the lap winding. From the segment 10, the winding proceeds to the 
bottom side 18. The winding receives thus a waveform. In the figure, the winding proceeds from the 
right to the left, and counterclockwise in the coil voltage phasor diagram. The winding is thus 
rotated to the left. If the winding were turned to the right, the commutator pitch would be yc  = 17, y 
= 34, y1 = 15,  y2 = 19.  The coil from the bottom side 16 would have to be bent to the right to the 
segment 10, and further to the upper side 3, because 16 + y2  = 16 + 19 = 35. But there are only 32 
coil sides, and therefore the coil will proceed to 35 – 32 = 3rd coil side. The commutator ends would 
in that case be even longer, which would be of no use. The pitch of the winding for a wave winding 
follows the illustration 
 
 21 yyy += .         (2.114) 
 
The position of brushes in a wave winding is solved in the same way as in a lap winding. When 
comparing the lap and wave windings, we can see that the brushes short-circuit the same coils in 
both cases. The differences between the windings are merely structural, and the winding type is 
selected basically on these structural grounds. As it was written above, the pitch of winding for 
regular commutator windings, which equals commutator pitch is obtained from 
 

 
p

anuQ
p

anKy ±
=

±
=c ,       (2.115) 

+ in the equation is used for progressive lap winding and retrogressive wave winding, and – is used 
for retrogressive lap and progressive wave winding, n is zero or a positive integer. If n is zero, it 
results in a lap winding, if n = 1, it results in a wave winding. The commutator pitch yc must be an 
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integer, otherwise the winding cannot be constructed. Not all combinations of K, p, and a result in 
yc as an integer, and therefore a designer must solve this problem in its complexity. 
 
 
2.15.3 Commutator Winding Examples, Balancing Connectors  
 
Nowadays, the conductors are typically inserted in slots that are on the surfaces of the armature. 
These windings are called drum armature windings. Drum-wound armature windings are in practice 
always double-layer windings, in which there are two coil sides in the slot on top of each other. 
Drum armature windings are constructed either as lap or wave windings. As discussed previously, 
the term lap winding describes a winding that is wound in laps along the periphery of the armature, 
the ends of one coil being connected to adjacent segments, Fig. 2.49a.  
 
EXAMPLE 2.29: Make a layout of the lap winding for a four-pole DC machine with 23 slots and 
one coil side in a layer. 
 
SOLUTION: It is given that Q = 23, 2p = 4, u = 1, number of commutator segment is 

23231 =⋅== uQK , and for lap winding 2a = 2p = 4. The commutator pitch is 1
2
2

c ±==±=
p
ay .  

We choose a progressive winding, which means that 1c +=y  (winding proceeds from left to right), 
and the total winding pitch is 22 == cyy . The coil span yQ in the number of slots is given by the 

number of slots per pole: 675.5
4
23

2Q ⇒===
p

Qy  slots. The same pitch expressed in the number 

of coil sides is: 131612121 =+⋅⋅== mQuyy . The negative sign is used because of the coil side 
arrangement in the slots according to Fig. 2.44a. 
  
The front end connector pitch is:  

1113212 −=−=−= yyy , which is shown in Fig. 2.49a. 
 
In the winding of Fig. 2.49a, there are 23 armature coils (46 coil sides, two in each slot), with one 
turn in each, four brushes, and a commutator with 23 segments. There are four current paths in the 
winding (2a = 4), which thereby requires four brushes. By following the winding starting from the 
first brush, we have to travel a fourth of the total winding to reach the next brush of opposite sign. 
 
From the segment 1, the left coil side is put to the upper layer number 1 in the slot 1 (see Fig. 2.44a). 
Then, the right side is put to the bottom layer 1+y1 = 1 + 11 = 12 in the slot 7, from where it is led to 
the segment number 1 + yc = 1 + 1 = 2. From the segment 2 to the upper layer 3 in the slot 2, 
because 12 – 9 = 3. Then it proceeds to the bottom layer 14 in the slot 8, because 3 + 11 = 14, and. 
then to the segment 3, and continuing to the coil side 5 in the slot 3 and via 16 in the slot 9 to the 
segment 4, and so on.  
 
In the figure, the brushes are broader than the segments of the commutator, the laps illustrated with 
thick lines being short-circuited via the brushes. In DC machines, a proper commutating requires 
that the brushes cover several segments. The coil sides of short-circuited coils are approximately in 
the middle between the poles, where the flux density is small. In these coils, the induced voltage is 
low, and the created short-circuit current is thus insignificant. 
 
EXAMPLE 2.30: Make a layout of a wave winding for a four-pole DC machine with 23 slots and 
one coil side in a layer. 
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SOLUTION: It is given that Q = 23, 2p = 4, u = 1. The number of commutator segments is 
23231 =⋅== uQK , and for a wave winding 2a = 2. The commutator pitch is 

12
2

123
c =

±
=

±
=

p
aKy , or 11.  We choose 12c +=y  and the total winding pitch is 242 c == yy . 

The coil span yQ in the number of slots is given by the number of slots per pole: 

675.5
4
23

2Q ⇒===
p

Qy . The same pitch expressed in the number of coil sides is:  

13161212 Q1 =+⋅⋅=−= uyy . The negative sign is used because of the coil side arrangement in the 
slots according to Fig. 2.44a. 
  

The front end connector pitch is:  

11132412 =−=−= yyy , which is shown in Fig. 2.49b. Fig 2.49b illustrates the same winding as 
in Fig. 2.49a developed to a wave winding. In wave windings, there are only two current paths, 2a = 
2  regardless of the number of poles. A wave winding and a lap winding can also be combined as a 
frog-leg winding.  
 
We can see in Fig. 2.49b that from the commutator segment 1 the coil left side is put to the upper 
layer number 13 in the slot 7. Then the right side is in the lower layer 13 + y1 = 13 + 13 = 26 in the 
slot 13, from where it is led to the segment number  1 + yc = 1 + 12 = 13. From the segment 13 to 
the upper layer 37 (slot 19), because 24 + y2 = 24 + 13 = 37. Then we proceed to the lower layer 2 
in the slot 2, because 37 + y1 = 37 + 11 = 48, which is over the number coil sides 46 in 23 slots; 
therefore, it is necessary to make a correction 48 – (2 × 23) = 50 – 46 = 2. From here we continue to 
the segment 2, because 13 +  yc = 13 + 12 = 25, after the correction 25 – 23 = 2, and so on.  
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Figure 2.49 a) Four-pole double-layer lap winding presented in a plane. The winding moves from left to right and acts as 
a generator. The coils belonging to the commutator circuit are illustrated with a thick line. This winding is not a full-
pitch winding unlike the previous ones. The illustrated winding commutates better than a full-pitch winding. b) The 
same winding developed to a wave winding. The wave under commutation is drawn with a thicker line than the others.  
 
When passing through a wave winding from one brush to another brush of the opposite sign, a half 
of the winding and a half of the segments of the commutator are gone through. The current has thus 
only two paths irrespective of the number of poles. As a matter of fact, in a wave winding, only one 
pair of brushes is required, which is actually enough for small machines. Nevertheless, usually as 
many brushes are required as there are poles in the machine. This number is selected in order to 
reach a maximum brush area with the shortest commutator possible. One coil of a wave winding is 
always connected to the commutator at about a distance of two pole pitches. 
 
A wave winding is a more common solution than a lap winding for small (< 50 kW) machines, since 
it is usually more cost-efficient than a lap winding. In a machine designed for a certain speed, a 
number of pole pairs and a flux, the wave winding requires less turns than a lap winding, a two-pole 
machine excluded. Correspondingly, the cross-sectional area of conductors in a wave winding has to 
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be larger than the area of a lap winding. Therefore, in a machine of a certain output, the copper 
consumption is the same irrespective of the type of winding.  
 
The previous windings are simple examples of the various alternative constructions for commutator 
windings. In particular, when numerous parallel paths are employed, we must ensure that the 
voltages in the paths are equal, or else there will occur compensating currents flowing through the 
brushes. These currents create sparks and wear out the commutator and the brushes. The 
commutator windings have to be symmetric to avoid extra losses.  
 
If the number of parallel pairs of paths is a, there are also a revolutions in its voltage polygon. If the 
revolutions are completely overlapping in the voltage polygon, the winding is symmetrical. In 
addition to this condition, the diameter H1–H2 has to split the polygon into two equal halves at all 
times. These conditions are usually met when both the number of slots Q and the number of poles 
2p are evenly divisible with the number of parallel paths 2a. Figure 2.50 illustrates a winding 
diagram of a four-pole machine. The number of slots is Q = 16, and the number of parallel paths is 
2a = 4. Hence, the winding meets the above conditions of symmetry. The coil voltage phasor 
diagram and the voltage polygon are depicted in Fig. 2.51. Since a = 2, there has to be one phasor a 
– 1 = 1 of the coil voltage phasor diagram between the consequent phasors of the polygon. When 
starting with the phasor 1–8, the next phasor in the voltage polygon is 3–10. In between, there is a 
phasor 17–24, which is of the same phase as the previous one, and so on. The first circle around the 
voltage polygon ends up at the point of the phasor 15–22, in the winding diagram at the commutator 
segment 9. However, the winding is not yet closed at this point, but continues for a second, similar 
revolution formed by the phasors 17–24 ... 31–6. The winding is fully symmetrical, and the coils 
short-circuited by the brushes are placed on the quadrature axes. 
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Figure 2.50. Balancing connectors or equalizer bars (Bars A, B, C, and D) of a lap winding. For instance the coil sides 
29 and 13 are located in the similar magnetic positions if the machine is symmetric. Hence, the commutator segments 
15 and 7 may be connected together with a balancing connector. 
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Figure 2.51. a) Coil voltage phasor diagram of the winding of Fig. 2.50, b) the coil voltage polygon of the winding of 
Fig. 2.50 and the connection points of the balancing connectors A, B, C, and D. There are two overlapping polygons in 
the illustrated voltage polygon. The phasor 1–8 is the first phasor and 3–10 the next phasor of the polygon. The phasor 
17–24 is equal to the phasor 1–8 because both have their positions in the middle of poles, but it is skipped when 
constructing the first polygon. The first polygon is closed at the tip of the phasor 15–22. The winding continues to form 
another similar polygon using phasors 17–24 ... 31–6. The winding is completely symmetrical, and its brush-short-
circuited coils are on the quadrature axes. The phasors 3–10 and 19–26 have a common tip point B in the polygons 
created by the commutator segment 3 and 11, as shown in Fig. 2.50 and in Fig. 2.51b, and the points can thus be 
connected by balancing connectors. The three other balancing connector points are A, C, and D. 
 
The potential at different positions of the winding is now investigated with respect to an arbitrary 
position, for instance a commutator segment 1. In the voltage polygon, this zero potential is 
indicated by the point A of the polygon. At t = 0, the instant depicted by the voltage polygon, the 
potential of the segment 2 amounts to the amplitude of the phasor 1–8, otherwise it is a projection 
on the straight line H1–H2. Respectively, the potential at all other points in the polygon with respect 
to the segment 1 is at every instant the phasor drawn from the point A to this point, projected on the 
straight line H1–H2. Since for instance the phasors 3–10 and 19–26 have a common point in the 
voltage polygon, the potential of the respective segments 3 and 11 of the commutator is always the 
same, and the potential difference between them is zero at every instant. Thus, these commutator 
segments can be connected with conductors. All those points that correspond to the common points 
of the voltage polygon, can be interconnected. Figure 2.50 also depicts three other balancing 
connectors. The purpose of these compensating combinations is to conduct currents that are created 
by the structural asymmetries of the machine, such as the eccentricity of the rotor. Without 
balancing connectors, the compensating currents, created for various reasons, would flow through 
the brushes, thus impeding the commutation. There is an alternating current flowing in the 
compensating combinations, the resulting flux of which tends to compensate the asymmetry of the 
magnetic flux caused by the eccentricity of the rotor. From this we may conclude that compensating 
combinations are not required in machines with two brushes. 
 
The maximum number of compensating combinations is obtained from the number of equipotential 
points. In the winding of Figs. 2.50 and 2.51, we could thus assemble eight combinations; however, 
usually only a part of the possible combinations are needed to improve the operation of the 
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machine. According to the illustrations, there are four possible combinations: A, B, C, and D. In 
machines that do not commutate easily, it may prove necessary to employ all the possible 
compensating combinations. In small and medium machines, the compensating combinations are 
placed behind the commutator. In large machines, ring rails are placed to one end of the rotor, while 
the commutator is at the other end. 
 
 
2.15.4 AC Commutator Windings 
 
The equipotential points A, B, C, and D of the winding in Fig. 2.51 are connected with rails in A, B, 
C, and D in Fig. 2.50. The voltages between the rails at time t = 0 are illustrated by the respective 
voltages in the voltage polygon. When the machine is running, the voltage polygon is rotating, and 
therefore the voltages between the rails form a symmetrical four-phase system. The frequency of 
the voltages depends on the rotation speed of the machine. The phase windings of this system, with 
two parallel paths in each, are connected in a square. With the same principle, with tappings, we 
may create other poly-phase systems connected in a polygon, Fig. 2.52. 
 
 
 
 
 
 
Figure 2.52. Equipotential points A, B, and C of the voltage 
polygon, which represents 12 coils of the commutator winding, 
are connected as a triangle to form a poly-phase system. The 
respective voltages are connected via slip rings and brushes to 
the terminals of the machine. 

A

B

C

 
 
If zc coils are connected as a closed commutator winding with a parallel path pairs, it is transformed 
with tappings into a m-phase AC system connected into a polygon by coupling the tappings at a 
distance of a step 
 

 
ma
z

y c
m =          (2.116) 

 
from each other. In a symmetrical poly-phase system, both ym and zc/a are integers. Windings of 
this type have been employed for instance in rotary converters, the windings of which have been 
connected both to the commutator and to the slip rings. They convert direct current into alternating 
current and vice versa. Closed commutator windings cannot be turned into star-connected windings, 
but only polygons are allowed. 
 
2.15.5 Current Linkage of the Commutator Winding and Armature Reaction 
 
The curve function of the current linkage created by the commutator winding is computed in the 
way illustrated in Fig. 2.9 for a three-phase winding. When defining the slot current Iu, the current 
of the short-circuited coils can be set zero. In short-pitched coils, there may be currents flowing in 
opposite directions in the different coil sides of a single slot. If zb is the number of brushes, the 
armature current Ia is divided into brush currents I = Ia/(zb/2). Each brush current in turn is divided 
into two paths as conductor currents Is = I/2 = Ia/2a, when a is the total number of path pairs of the 
winding. In a slot, there are zQ conductors, and thus the sum current of a slot is 
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where z is the number of conductors in the complete winding. All the pole pairs of the armature are 
alike, and therefore it suffices to investigate only one of them, that is, a two-pole winding, Fig. 2.46. 
The curve function of the magnetic voltage follows thus the illustration of Fig. 2.53. 
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Figure 2.53. Current linkage curve of the winding of Fig. 2.46, when the commutating takes place in the coils in the 
slots 5 and 13. 
 
The number of brushes of a commutator machine normally equals to the number of poles. The 
number of slots between the brushes is 
 

 
p

Qq
2

= .         (2.118) 

 
This corresponds to the number of slots per pole and phase of AC windings. The effective number 
of slots per pole and phase is always somewhat lower, because a part of the coils are always short 
circuited. The distribution factor for an armature winding is obtained from Eq. (2.33). For a 
fundamental, and m = 1 it is rewritten in the form 
 

 

Q
pQ

pk
πsin

2
da1 = .        (2.119) 

 
Armature coils are often short pitched, and the pitch factor is thus obtained from Eq. (2.32). The 
fundamental winding factor of a commutator winding is thus  
 

 
π
2

pa1da1wa1 ≈= kkk .        (2.120) 

 
When the number of slots per pole increases, da1k  approaches the limit 2/π. This is the ratio of the 
voltage circle (polygon) diameter to the circle perimeter. In ordinary machines, the ratio of short-
pitching is W/τp > 0,8, and therefore pa1k  > 0,95. As a result, the approximate value π/2wa1 =k  is 
an adequate starting point in the initial manual computation. More thorough investigations have to 
be based on the analysis of the curve function of the current linkage. In that case, the winding has to 
be observed in different positions of the brushes. Fig. 2.45 shows that at the right side of the 
quadrature axis q, the direction of each slot current is towards the observer, and on the left, away 
from the observer. In other words, the rotor becomes an electromagnet with the north pole at the 
bottom and the south pole at the top. The pole pair current linkage of the rotor is  
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of the equation is the number of coil turns per pole pair in a commutator armature in one parallel 
path, that is, turns connected in series, because z/2 is the number of all armature turns; z/2(2a) is the 
number of turns in one parallel path, in other words, connected in series, and finally, z/2(2a)p is the 
number of turns per pole pair. The current linkage calculated according to Eq. (2.121) is slightly 
higher than in reality, because the number of slots per pole and phase includes also the slots with 
short-circuited coil sides. In calculation, we may employ the linear current density 
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The current linkage of the linear current density is divided into magnetic voltages of the air gaps, 
the peak value of which is  
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In the diagram, the peak value δaΘ̂ is located at the brushes (in the middle of the poles) the value 

varying linearly between the brushes, as illustrated with the dashed line in Fig. 2.53. δaΘ̂ is the 
armature reaction acting in the quadrature axis under one tip of a pole shoe, and it is the current 
linkage to be compensated. The armature current linkage also creates commutating problems 
because of which the brushes have to be shifted from the q-axis by and angle ε to a new position as 
shown in Fig 2.54. 
 
The figure gives also the positive directions of the current I and the respective current linkage. The 
current linkage can be divided into two components 
 

 εΘεΘΘ sinsin
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ma
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The former is called a direct component and the latter a quadrature component. The direct 
component magnetizes the machine either into the parallel or opposite direction with the actual field 
winding of the main poles of the machine. There is demagnetizing effect, if brushes are shifted in 
the direction of rotation in generator mode, or in the opposite direction of rotation in motoring 
operation, the magnetizing effect in contrary, in generating operation opposite direction of rotation, 
in motoring mode in the direction of rotation. The quadrature component distorts the magnetic field 
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of the main poles, but neither magnetizes nor demagnetizes it. This is not a phenomenon restricted 
to commutator machines, but the reaction is in fact present in all rotating machines. 
  
 
 
 
 
 
 
 
Figure 2.54. Current linkage of a 
commutator armature and its components. 
To ensure better commutation, the brushes 
are not placed on the q-axis. 
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2.16 Compensating Windings and Commutating Poles 
 
As it was stated above, the armature current linkage (called also armature reaction) has some 
negative influence on the DC machine operation. The armature reaction may create commutating 
problems and must, therefore, be compensated. There are different methods to mitigate the armature 
reaction caused problems: 1) to shift brushes from their geometrical neutral axis to the new 
magnetically neutral axis, 2) to increase the field current to compensate the main flux decrease 
caused by the armature reaction, 3) to build commutating poles, and 4) to build compensating 
winding.  
 
The purpose of compensating windings in DC machines is to compensate harmful flux components 
created by armature windings. Flux components are harmful, because they create an unfavourable 
air gap flux distribution in DC machines. The dimensioning of compensating windings is based on 
the current linkage that has to be compensated by the compensating winding. The conductors of a 
compensating winding have therefore to be placed close to the surface of the armature, and the 
current flowing in them has to be opposite to the armature current. In DC machines, the 
compensating winding is inserted in the slots of the pole shoes. The compensating effect has to be 
created in the section piτα of the pole pitch, as illustrated in Fig. 2.55. If z is the total number of 
conductors in the armature winding, and the current flowing in them is Is, we obtain an armature 
linear current density  
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The total current linkage ΘΣ of the armature reaction and the compensating winding has to be zero 
in the integration path. It is possible to calculate the required compensating current linkage Θk by 
evaluating the corresponding current linkage of the armature to be compensated. The current 
linkage of the armature Θa occurring under the compensating winding at the distance αDCτp/2, as it is 
shown in Fig. 2.55 is 
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Since there is an armature current Ia flowing in the compensating winding, we obtain the current 
linkage of the compensating winding accordingly 
 
 akk IN−=Θ ,         (2.130) 
 
where Nk is the number of turns of the compensating winding. Since the current linkage of the 
armature winding has to be compensated in the integration path, the common current linkage is 
written 
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Now, we obtain the number of turns of the compensating winding to be inserted in the pole shoes 
producing demagnetizing magnetic flux in the q-axis compensating the armature reaction flux:  
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As Nk has to be an integer, Eq. (2.133) is only approximately feasible. To avoid large pulsating flux 
components and noise, the slot pitch of the compensating winding is set to diverge 10–15 % from 
the slot pitch of the armature. 
 
Since a compensating winding cannot completely cover the surface of the armature, also 
commutating poles are utilized to compensate the armature reaction although their function is just to 
improve commutation. These commutating poles are located between the main magnetizing poles 
of the machine. There is an armature current flowing in the commutating poles. The number of 
turns on the poles is selected such that the effect of the compensating winding is strengthened 
appropriately. In small machines, commutating poles alone are used to compensate the armature 
reaction. If commutation problems still occur despite a compensating winding and commutating 
poles, the position of the brush rocker of the DC machine can be adjusted so that the brushes are 
placed on the real magnetic quadrature axis of the machine. 
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Figure 2.55. a) Location of the compensating windings and the commutating poles, b) definition of the current linkage 
of a compensating winding.  
 
In principle, the dimensioning of a commutating pole winding is straightforward. Since the 
compensating winding covers the section piτα of the pole pitch and includes Nk turns that carry the 
armature current Ia, the commutating pole winding should compensate the remaining current 
linkage of the armature ( ) pi1 τα− . The number of turns in the commutating pole Ncp should be 

 k
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1 NN
α
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= .        (2.133) 

When the same armature current Ia flows both in the compensating winding and in the commutating 
pole, the armature reaction will be fully compensated. 
 
If there is no compensation winding, the commutating pole winding must be dimensioned and the 
brushes positioned so that the flux in a commutating armature coil is at its maximum, and no voltage 
is induced in the coil. 
 
 

2.17 Rotor Windings of Asynchronous Machines 
 
The simplest rotor of an induction machine is a solid iron body, turned and milled to a correct shape. 
In general, a solid rotor is applicable to high-speed machines and in certain cases also to normal-
speed drive. However, the computation of the electromagnetic characteristics of a steel rotor is a 
demanding task, and it is not discussed here. A solid rotor is characterized by a high resistance and a 
high leakage inductance of the rotor. The phase angle of the apparent power created by a waveform 
penetrating a linear material is 45°, but the saturation of the steel rotor reduces the phase angle. A 
typical value for the phase angle of a solid rotor varies between 30° and 45°, depending on the 
saturation. The characteristics of a solid-rotor machine are discussed for instance in Pyrhönen 
(1991), Huppunen (2004), and Aho (2007). The performance characteristics of a solid rotor can be 
improved by slotting the surface of the rotor, Fig. 2.56. Axial slots are used to control the flow of 
eddy currents in a direction favourable to the torque production. Radial slots increase the length of 
the paths of the eddy currents created by certain high-frequency phenomena. This way, eddy 
currents are damped and the efficiency of the machine is improved. The structure of the rotor is of 
great significance in torque production, Fig. 2.57. An advantage of common cage winding rotors is 
that they produce the highest torque with small values of slip, whereas solid rotors yield a good 
starting torque. 
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Figure 2.56. Different solid rotors. a) A solid rotor with axial and radial slots (in this model, short-circuit rings are 
required. They can be constructed either by leaving the part of the rotor that extends from the stator without slots, or by 
equipping it with aluminium or copper rings, b) a rotor equipped with short-circuit rings in addition to slots, c) a slotted 
and cage-wound rotor. A completely smooth rotor can also be employed. 
 
 
 
Figure 2.57. Torque curves of different 
induction rotors as a function of mechanical 
angular speed Ω. a) A normal double-cage 
winding rotor, b) a smooth solid rotor 
without short-circuit rings, c) a smooth solid 
rotor equipped with copper short-circuit 
rings, d) axially and radially slitted solid 
rotor equipped with copper short-circuit 
rings. 
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In small machines, a Ferraris rotor can be employed. It is constructed of a laminated steel core 
covered with a thin layer of copper. The copper covering provides a suitable path for eddy currents 
induced to it. The copper covering takes up a certain space in the air gap, the electric value of which 
increases notably because of the covering, since the relative permeability of copper is μr = 
0.9999926. As a diamagnetic material, copper is thus even a somewhat weaker path for the 
magnetic flux than the air.  
 
The rotor of an induction machine can be produced as a normal slot winding by following the 
principles discussed in the previous sections. A wound rotor has to be equipped with the same 
number of pole pairs as the stator, and therefore it is not in practice suitable for machines permitting 
a varying number of poles. The phase number of the rotor may differ from the phase number of the 
stator. For instance, a two-phase rotor can be employed in slip-ring machines with a three-phase 
stator. The rotor winding is connected to an external circuit via slip rings. 
 
The most common short-circuit winding is the cage winding, Fig. 2.58. The rotor is produced of 
electric steel sheets and it is provided with slots containing non-insulated bars, the ends of which 
are connected either by welding or brazing to the end rings, that is, to the short-circuit rings. The 
short-circuit rings are often equipped with fins that together act as a cooling fan as the rotor rotates. 
The cage winding of small machines is produced of pure aluminium by simultaneously pressure 
casting the short-circuit rings, the cooling ribs and the bars of the rotor.    
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Figure 2.58. Simple cage winding. Cooling fans are not illustrated. Qr = 24.  
 
Fig. 2.59 illustrates a full-pitch winding of a two-pole machine observed from the rotor end. Each 
coil of the rotor constitutes also a complete phase coil, since the number of slots in the rotor is Qr = 
6. The star point 0 forms, based on symmetry, a neutral point. If there is only one turn in each coil, 
the coils can be connected at this point. The magnetic voltage created by the rotor depends only on 
the current flowing in the slot, and therefore the connection of the windings at the star point is of no 
influence. However, the connection of the star point at one end of the rotor turns the winding into a 
six-phase star connection with one bar, that is, half a turn, in each phase. The six-phase winding is 
then short circuited also at the other end. Since also the shaft of the machine takes some room, the 
star point has to be created with a short-circuit ring as illustrated in Fig. 2.58. We can now see that 
Fig. 2.59 depicts a star-connected, short-circuited poly-phase winding, for which the number of 
phase coils is in a two-pole case equal to the number of bars in the rotor: mr = Qr. 
 
 
 
Figure 2.59. Three-phase winding of a two-pole rotor. 
The number of turns in the phase coil is Nr = 1. If the 
winding is connected in star at point 0 and it is short-
circuited at the other end, a six-phase, short-circuited 
winding is created, for which the number of turns is  Nr = 
½, kwr = 1. 
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In machine design, it is often assumed that the analysis of the fundamental ν = 1 alone gives an 
adequate description of the characteristics of the machine. However, this is valid for cage windings 
only if we consider also the conditions related to its number of bars. A cage winding acts differently 
with respect to different harmonics ν. Therefore, a cage winding has to be analyzed with respect to 
the general harmonic ν. This is discussed in more detail in Chapter 7, in which different types of 
machines are investigated separately. 
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2.18 Damper Windings 
 
The damper windings of synchronous machines are usually short-circuit windings, which in non-
salient pole machines are contained in the same slots with magnetizing windings, and in salient pole 
machines in particular, in the slots at the surfaces of pole shoes. There are no bars in the damper 
windings on the quadrature axes of salient pole machines, but only the short-circuit rings encircle 
the machine. The resistances and inductances of the damper winding of the rotor are thus quite 
different in the d-direction and q-direction. In a salient pole machine constructed of solid steel, the 
material of the rotor core itself may suffice as a damper winding. In that case, an asynchronous 
operation resembles the operation of a solid rotor induction machine. Figure 2.60 illustrates a 
damper winding of a salient pole synchronous machine. 
 
Damper windings improve the performance characteristics of synchronous machines especially 
during the transients. Like in asynchronous machines, thanks to damper windings, synchronous 
machines can in principle be started direct-on-line. Also a stationary asynchronous drive is in some 
cases a possible choice. Especially in single-phase synchronous machines and in the unbalanced 
load situations of three-phase machines, the function of damper windings is to damp the counter-
rotating fields of the air gap which otherwise cause great losses. In particular, the function of 
damper windings is to damp the fluctuation of the rotation speed of a synchronous machine when 
rotating loads with pulsating torques, such as piston compressors. 
 

copper plate

copper plate
damper bar

connector

d-axis

q-axis

 
 
Figure 2.60. Structure of the damper winding of a six-pole salient pole synchronous machine. The copper end plates are 
connected with a suitable copper connector to form a ring for the damper currents. Sometimes also real rings connect 
the damper bars. 
 
The effective mechanisms of damper windings are relatively complicated and diverse, and therefore 
their mathematically accurate design is difficult. That is why damper windings are usually 
constructed by drawing upon empirical knowledge. However, the inductances and resistances of the 
selected winding can usually be evaluated with normal methods to define the time constants of the 
winding. 
 
When the damper windings of salient pole machines are placed in the slots, the slot pitch has to be 
selected to diverge 10–15 % from the slot pitch of the stator to avoid the pulsation of the flux and 
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noise. If the slots are skewed (usually for an amount of a single stator slot pitch), the same slot pitch 
can be selected both for the stator and the rotor. Damper winding comes into effect only when the 
bars of the winding are connected with short-circuit rings. If the pole shoes are solid, they may, 
similarly as the solid rotor of a non-salient pole machine, act as a damper winding as long as the 
ends of the pole shoes are connected with durable short-circuit rings. In non-salient pole machines, 
an individual damper winding is seldom used. However, in non-salient pole machines, conductors 
may be mounted under slot wedges, or the slot wedges themselves are used as the bars of the 
damper winding. 
 
In synchronous generators, the function of damper windings is to damp for instance counter-rotating 
fields. To minimize losses, the resistance is kept to a minimum in damper windings. The cross-
sectional area of the damper bars is selected to be 20–30 % of the cross-sectional bar area of the 
armature winding. The windings are made of copper. In single-phase generators, damper bar cross-
sectional areas larger than 30 % of the stator copper area are employed. The frequency of the 
voltages induced by counter-rotating fields to the damper bars is double when compared with the 
network frequency. Therefore, it has to be considered whether special actions are required with 
respect to the skin effect of the damper windings (for instance the utilization of the Roebel bars 
(braided conductors) to avoid skin effect). The cross-sectional area of the short-circuit rings is 
selected to be approximately 30–50 % of the cross-sectional area of the damper bars per pole. 
 
The damper bars have to damp the fluctuations of the rotation speed caused by the pulsating torque 
loads. They also have to guarantee a good starting torque when the machine is starting as an 
asynchronous machine. Thus, brass bars or small-diameter copper damper bars are employed to 
increase the rotor resistance. The cross-sectional area of copper bars is typically only 10 % of the 
cross-sectional area of the copper of the armature winding.  
 
In permanent magnet synchronous machines, in axial flux machines in particular, the damper 
winding may be easily constructed by placing a suitable copper or aluminium plate on the surface of 
the rotor, on top of the magnets. However, achieving a total conducting surface in the range of 20 – 
30 % of the stator copper surface may be somewhat difficult as the plate thickness easily increases 
too large and limits the air gap flux density created by the magnets. 
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